
XSCHEM 0.29 Manual and Tutorials

1

XSCHEM : schematic capture

and netlisting EDA tool

Xschem is a schematic capture program, it allows creation of hierarchical representation of

circuits with a top down approach . By focusing on interfaces, hierarchy and instance properties

a complex system can be described in terms of simpler building blocks. A VHDL or Verilog or

Spice netlist can be generated from the drawn schematic, allowing the simulation of the circuit.

Key feature of the program is its drawing engine written in C and using directly the Xlib drawing

primitives; this gives very good speed performance, even on very big circuits. The user interface

is built with the Tcl-Tk toolkit, tcl is also the extension language used.

Features

 hierarchical schematic drawings, no limits on size

 any object in the schematic can have any sort of properties (generics in VHDL,

parameters in Spice or Verilog)

 new Spice/Verilog primitives can be created, and the netlist format can be defined by the

user

 tcl extension language allows the creation of scripts; any user command in the drawing

window has an associated tcl comand

 VHDL / Verilog / Spice netlist, ready for simulation

 Behavioral VHDL / Verilog code can be embedded as one of the properties of the

schematic block,

Xschem runs on UNIX systems with X11 and Tcl-Tk toolkit installed.

Documentation

XSCHEM manual

Download

Current release

Old XSCHEM releases on Sourceforge

SVN: svn checkout svn://repo.hu/xschem/trunk

License

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/xschem_man.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/releases/
https://sourceforge.net/projects/xschem/

XSCHEM 0.29 Manual and Tutorials

2

The software is released under the GNU GPL, General Public License

Contact

Anyone interested in this project please contact me at the following address:

STEFAN.SCHIPPERS@GMAIL.COM

Software requirements:

- X11

- tcl-tk libs and developent files

- c99 compiler

- bison (only for compiling the grammar parser)

- flex (only for compiling the lexical analyzer

- Xpm library and -dev header files

- awk (tested with gawk and mawk)

Systems tested:

- Linux debian / Redhat

- Solaris sparc

- Windows (with the cygwin layer and cygwin/Xorg X11 server, plus the tcl/tk toolkit and the -

dev libraries)

Screenshots

 analog circuit example

XSCHEM 0.29 Manual and Tutorials

3

 digital system for VHDL simulation

XSCHEM 0.29 Manual and Tutorials

4

XSCHEM 0.29 Manual and Tutorials

5

Contents
XSCHEM : schematic capture and netlisting EDA tool .. 1

Features .. 1

Documentation .. 1

Download ... 1

License .. 1

Contact ... 2

Software requirements: .. 2

Systems tested: .. 2

Screenshots .. 2

INDEX .. 8

TUTORIALS .. 8

FAQ .. 8

WHAT IS XSCHEM .. 10

INSTALL XSCHEM ... 13

Detailed XSCHEM startup sequence .. 14

RUN XSCHEM ... 15

XSCHEM COMMAND LINE OPTIONS .. 16

CREATING A NEW SCHEMATIC ... 17

XSCHEM ELEMENTS .. 20

WIRES .. 20

LINES ... 20

RECTANGLES ... 21

POLYGONS ... 22

CIRCLES / ARCS .. 23

TEXT .. 23

SYMBOLS ... 26

XSCHEM PROPERTIES .. 32

GLOBAL PROPERTIES ... 34

PIN ORDERING .. 37

COMPONENT INSTANTIATION .. 38

SPECIAL COMPONENTS ... 45

XSCHEM 0.29 Manual and Tutorials

6

SYMBOL PROPERTY SYNTAX ... 47

GENERAL RULES .. 47

ATTRIBUTE SUBSTITUTION .. 49

OTHER PREDEFINED SYMBOL ATTRIBUTES .. 49

PREDEFINED SYMBOL VALUES .. 55

COMPONENT PROPERTY SYNTAX ... 57

PREDEFINED COMPONENT ATTRIBUTES... 58

CREATING A CIRCUIT SCHEMATIC ... 63

Automatic symbol creation ... 67

Automatic Component Wiring .. 71

CREATING SYMBOLS ... 73

creating a new symbol and schematic by cloning .. 73

COMPONENT PARAMETERS .. 74

EDITOR COMMANDS ... 78

EDITOR COMMAND CHEATSHEET ... 78

KEYBIND CUSTOMIZATION.. 81

STRETCH OPERATIONS .. 81

PLACE WIRES SNAPPING TO CLOSEST PIN OT NET ENDPOINT ... 83

CONSTRAINED MOVE .. 83

NETLISTING ... 86

EXAMPLE ... 86

Other netlist formats .. 88

NET PROBES .. 89

SIMULATION ... 95

VERILOG SIMULATION .. 95

DEVELOPER INFO .. 104

GENERAL INFORMATION .. 104

SYMBOLS ... 104

WIRES .. 106

PROPERTIES ... 106

COORDINATE SYSTEM ... 107

XSCHEM FILE FORMAT SPECIFICATION ... 107

XSCHEM 0.29 Manual and Tutorials

7

VERSION STRING ... 109

GLOBAL SCHEMATIC/SYMBOL PROPERTIES.. 109

TEXT OBJECT.. 109

WIRE OBJECT ... 110

LINE OBJECT .. 110

RECTANGLE OBJECT .. 110

OPEN / CLOSED POLYGON OBJECT ... 110

ARC OBJECT ... 111

COMPONENT INSTANCE ... 111

EXAMPLE OF A COMPLETE SYMBOL FILE (7805.sym) ... 112

EXAMPLE OF A COMPLETE SCHEMATIC FILE (pcb_test1.sch) ... 113

XSCHEM REMOTE INTERFACE SPECIFICATION .. 116

GENERAL INFORMATIONS .. 116

TUTORIAL: INSTALL XSCHEM ... 117

This concludes the tutorial, if all the steps were successful there is a good probability that

xschem is correctly installed on your system. ... 128

TUTORIAL: RUN A SIMULATION WITH XSCHEM ... 129

TUTORIAL: CREATE AN XSCHEM SYMBOL ... 139

TUTORIAL: Manage XSCHEM design / symbol libraries .. 153

TUTORIAL: Use Bus/Vector notation for signal bundles / arrays of instances ... 155

FAQ .. 158

When placing a new component i want a dialog showing the defined libraries before opening

the TCL file selector .. 158

I want new instances to get assigned a new unique name automatically. 158

Why do i have to press 'm' to move a component instead of just click and drag? 158

XSCHEM 0.29 Manual and Tutorials

8

INDEX

1. What is XSCHEM

2. Install XSCHEM

3. Run XSCHEM

4. XSCHEM elements

5. Symbols

6. XSCHEM properties

7. Component instantiation

8. Symbol properties syntax

9. Component properties syntax

10. Creating a circuit schematic

11. Creating symbols

12. Component parameters

13. Editor commands

14. Netlisting

15. Net Probes

16. Simulation

17. Developer Info, XSCHEM file format specification

18. XSCHEM remote interface specification

TUTORIALS

 Step by step instructions: Install XSCHEM

 Run a simulation with XSCHEM

 Create a symbol with XSCHEM

FAQ

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/what_is_xschem.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/install_xschem.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/run_xschem.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/xschem_elements.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/building_xschem_symbol.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/xschem_properties.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/component_instantiation.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/symbol_property_syntax.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/component_property_syntax.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/creating_schematic.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/creating_symbols.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/parameters.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/commands.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/netlisting.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/net_probes.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/simulation.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/developer_info.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/xschem_remote.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/tutorial_install_xschem.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/tutorial_run_simulation.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/tutorial_create_symbol.html

XSCHEM 0.29 Manual and Tutorials

9

 Common questions about XSCHEM

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/faq.html

XSCHEM 0.29 Manual and Tutorials

10

WHAT IS XSCHEM

Electronic systems today tend to be generally very complex and a lot of work has to be done

from circuit conception to the validation of the final product. One of the milestones of this

process is the creation of the circuit schematic of the electronic system.

The circuit diagram has to be drawn using an interactive computer program called schematic

editor , this is usually a very first step in the design cycle of the product. Once the schematic has

been drawn on the computer, the circuit connectivity and device list (netlist) can be generated

and sent to a circuit simulator (spice, hspice, eldo, just to mention some) for performing circuit

simulation.

So, as you probably guessed, XSCHEM is a schematic capture program that allows to

interactively enter an electronic circuit using a graphical and easy to use interface. When the

schematic has been created a circuit netlist can be generated for simulation. Currently XSCHEM

supports four netlist formats:

1. SPICE netlist

2. VHDL netlist

3. VERILOG netlist

4. tEDAx netlist for Printed board editing software like pcb-rnd.

XSCHEM was initially created for VLSI design, not for printed circuit board schematics (PCB),

however the recently added tEDAx netlist format is used to export XSCHEM schematics to pcb-

rnd or other tEDAx-aware PCB editors. The roadmap for XSCHEM development will focus

more in the future to build a tight integration with pcb-rnd printed board editor, joining the

CoralEDA ecosystem philosophy.

XSCHEM initial design goal was to handle Integrated Circuit (IC) design and generate netlists

for Very Large Scale digital, analog or mixed mode simulations. While the user interface looks

very simple, the netlisting and rendering engine in XSCHEM are designed from the ground-up to

handle in the most efficient way very large designs. Also the user interaction has no bells and

whistles but is the result of doing actual work on big projects in the most efficient way. This is

why for example most of the work is done with bind keys, instead of using context menus or

elaborate graphical actions, simply these things will slow your work if most of your schematics

have 5-8 levels of hierarchy and 1000K+ transistors.

Here under a picture of a VLSI SOC (System On Chip) imported in XSCHEM. As you can see

the ability of XSCHEM is to handle really big designs. This has been the primary goal during the

whole development of the program. The sample design showed has more than 10 levels of

hierarchy and really big schematics. For each hierarchy level one component is expanded until

the leaf of the tree is reached. :-)

http://repo.hu/projects/pcb-rnd
http://repo.hu/projects/pcb-rnd
http://repo.hu/projects/coraleda

XSCHEM 0.29 Manual and Tutorials

11

XSCHEM 0.29 Manual and Tutorials

12

It is also worth to point out that XSCHEM has nothing to do with GSCHEM, the name similarity

is just coincidence. GSCHEM is another powerful Schematic Capture program, primarily

focused on board level (PCB) system design. See gEDA for more information.

http://wiki.geda-project.org/geda:gaf
http://geda-project.org/

XSCHEM 0.29 Manual and Tutorials

13

INSTALL XSCHEM

in order to install the program run the following command:

 user:~$ cd xschem-<version>; ./configure

this will make all the necessary checks for required libraries and system tools. If configure ends

with no errors we are ready to compile:

 user:~$ make

If we want to install xschem and its required files (execute as root if you plan to do a system-

wide installation, for example in /usr/local):

 user:~$ make install

This will install all the runtime needed files into the locations previously configured (can be

found in Makefile.conf). To change the default installation prefix (/usr/local), please replace the

configure step shown above with:

 ./configure --prefix=new/prefix/path

DESTDIR is supported.

For testing purposes xschem can be run and invoked from the build directory xschem-

<version>/src/ without installation.

 user:~$ cd xschem-2.7.0/src && ./xschem

When xschem is running, type puts $XSCHEM_LIBRARY_PATH in the xschem tcl prompt to know

the library search path.

Type puts $XSCHEM_SHAREDIR to see the installation path.

Sample user design libraries are provided and installed systemwide under

${XSCHEM_SHAREDIR/xschem_library/. The XSCHEM_START_WINDOW specifies a

schematic to preload at startup, to avoid absolute paths use a path that is relative to one of the

XSCHEM_LIBRARY_PATH directories. XSCHEM will figure out the actual location. You may

comment the definition if you don't want any schematic on startup.

XSCHEM 0.29 Manual and Tutorials

14

If you need to override system settings, create a ~/.xschem/xschemrc. The easiest way is to

copy the system installed version from ${prefix}/share/xschem/xschemrc and then make the

necessary changes

 user:$ mkdir ~/.xschem

 user:$ cp <install root>/share/xschem/xschemrc ~/.xschem/xschemrc

Detailed XSCHEM startup sequence

1. If ../src/xchem.tcl with respect to current dir is existing and ../xschem_library is

also existing then we are starting from a build directory, set XSCHEM_SHAREDIR to `pwd`

and also set XSCHEM_LIBRARY_PATH to `pwd`/../xschem_library.

2. else use compile-time (generated from configure script) provided XSCHEM_SHAREDIR.

3. if in current dir there is a xschemrc file source it.

4. else if there is a USER_CONF_DIR/xschemrc file source it.

5. else if there is a XSCHEM_SHAREDIR/xschemrc file then source it

XSCHEM_SHAREDIR and USER_CONF_DIR are preprocessor macros passed at compile time

by the configure script. The first one will be overridden only if executing from a build

directory, see point 1.

6. if XSCHEM_SHAREDIR not defined --> error and quit.

7. source $XSCHEM_SHAREDIR/xschem.tcl.

8. start loading user provided schematic file or start with empty window (or filename

specified in XSCHEM_START_WINDOW tcl variable).

XSCHEM 0.29 Manual and Tutorials

15

RUN XSCHEM

Assuming xschem is installed in one of the ${PATH} search paths just execute:

user:~$ xschem

the xschem window should appear. If xschem is not in the search path then specify its full

pathname.

if a filename is given that file will be loaded on startup:

user:~$ xschem .../xschem_library/examples/0_examples_top.sch

XSCHEM 0.29 Manual and Tutorials

16

XSCHEM COMMAND LINE OPTIONS

xschem accepts short (-h) or long (--help) options:

usage: xschem [options] [schematic | symbol]

Options:

 -h --help print this help

 -n --netlist do a netlist of the given schematic cell

 -v --version print version information and exit.

 -V --vhdl set netlist type to VHDL

 -S --simulate run a simulation of the current schematc file

 (spice/Verilog/VHDL, depending on the netlist

 type chosen).

 -w --verilog set netlist type to Verilog

 -i --no_rcload do not load any xschemrc file

 -o --netlist_path set output for netlist

 -t --tedax set netlist type to tEDAx

 -s --spice set netlist type to SPICE

 -3 --a3page set page size for pdf export to A3

 -x --no_x dont use X (only command mode)

 --events Do not use tclreadline, empty tcl shell prompt, dump

XSCHEM 0.29 Manual and Tutorials

17

 activity on stdout for remote controlling other

software

 -z --rainbow use a raibow-looking layer color table

 -W --waves show simulation waveforms

 -f --flat_netlist set flat netlist (for spice format only)

 -r --no_readline start without the tclreadline package (this is

 necessary if stdin and stdout are to be redirected

 for example to /dev/null).

 -c --color_ps set color postscript

 --plotfile <file> use <file> as output for plot (png, svg, ps)

 --rcfile <file> use <file> as a rc file for startup instead of the

 default xschemrc.

 -p --postscript

 --pdf export pdf schematic

 --png export png schematic

 --svg export svg schematic

 -q --quit quit after doing things (no interactive mode)

 -l <file>

 --log <file> set a log file

 -d <n>

 --debug <n> set debug level: 1, 2, 3,.. C program debug

 -1, -2, -3... TCL frontend debug

xschem: interactive schematic capture program

Example: xschem counter.sch

the schematic file `counter.sch' will be loaded.

CREATING A NEW SCHEMATIC

To create a new schematic run xschem and give a non existent filename:
xschem aaa.sch

XSCHEM 0.29 Manual and Tutorials

18

You can save the schematic by pressing '<ctrl shift>s' or by using the menu File - Save

As:

XSCHEM 0.29 Manual and Tutorials

19

If no filename change is needed you can just use File - Save. Now a new empty schematic file

is created. You can use this test.sch for testing while reading the manual. After exiting

XSCHEM you can load directly this schematic with the following commands, they are all

equivalent.

xschem defaults its search to the

XSCHEM_LIBRARY_PATH root path

.sch may be omitted, it is added by default ...

xschem test

or ...

xschem /home/schippes/x/test.sch

or ...

xschem ${HOME}/schippes/x/test

you can load test.sch when xschem is running by using the load command '<ctrl>o' key or

by menu Open command. Use the file selector dialog to locate the schematic and load it in. When

loading a new file XSCHEM asks to save the currently loaded schematic if it has been modified.

XSCHEM 0.29 Manual and Tutorials

20

XSCHEM ELEMENTS

WIRES

Wires in XSCHEM are the equivalent of copper traces in printed circuit boards or electrical

conductors. Wires are drawn as lines but the electrical connectivity graph is built by XSCHEM.

To draw a wire segment point the mouse somewhere in the drawing window and press the 'w'

key. A rubber wire is shown with one end following the mouse. Clicking the left mouse button

finishes the placement. The following picture shows a set of connected wires. There are many

wire segments but only 3 electrical nodes. XSCHEM recognizes connection of wires and uses

this information to build up the circuit connectivity. All wires are drawn on the 'wire' layer. One

electrical node in the picture below has been highlighted in red (this is a XSCHEM function we

will cover later on).

LINES

Lines are just segments that are used for drawing. Lines do not have any electrical meaning, in

fact when building the circuit netlist, lines are completely ignored. XSCHEM uses different

layers to draw lines. Each layer has its own color, allowing to draw with different colors. Lines

XSCHEM 0.29 Manual and Tutorials

21

are placed like wires, but using the 'l' key. The 'Layers' menu allows to select various different

layers (colors) for the line.

RECTANGLES

Rectangles like Lines are drawable on multiple layers, and also do not carry any electrical

information. A specific 'PIN' layer is used to make pins that are used to interconnect wires and

components. Different fill styles (or no fill) can be defined for each layer. Rectangles are placed

with the 'r' bindkey

XSCHEM 0.29 Manual and Tutorials

22

POLYGONS

Polygons are paths that can be drawn on any layer. Placements begins with the 'ctrl-w' key

and continues as long as the user clicks points on the drawing area. Placement ends when:

 the last point is coincident to the first point.

 or by clicking the right mouse button, for an open polygon.

 or by hitting the Return key, for a closed polygon (this can be done also by clicking the

last point coincident to the first polygon point).

XSCHEM 0.29 Manual and Tutorials

23

CIRCLES / ARCS

Arcs may be placed by hitting the Shift-C key. First click the start point, then the end point.

Moving the mouse will show the arc passing thru the 2 points and the mouse waypoint. Clicking

will place the arc. Arcs may be modified after creation by selecting in stretch mode (Ctrl-

Button1-drag) one of the arc ends or the arc center:

- (end point selected in stretch mode): by starting a move (m) operation and moving the mouse

the arc sweep may be changed.

- (start point selected in stretch mode):by starting a move (m) operation and moving the mouse

the start arc angle may be changed.

- (arch center selected in stretch mode): by starting a move (m) operation and moving the mouse

the arc radius may be changed.

If a circle is needed then use the Ctrl-Shift-C key combination.

TEXT

XSCHEM 0.29 Manual and Tutorials

24

Text can be placed with the 't' bindkey. A dialog box appears where the user inputs the text and

text size.

The layer property can be used to draw text on a different layer, for example, setting layer=6

will draw on cyan color. A font property is defined to change the default font. Use only

Monospaced fonts because bounding box is not correctly calculated by XSCHEM for

proportional typefaces. You will learn in the xschem properties chapter how to set, edit and

change object properties.

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/xschem_properties.html

XSCHEM 0.29 Manual and Tutorials

25

XSCHEM 0.29 Manual and Tutorials

26

SYMBOLS

Symbols are graphical elements that represent electrical components. A symbol represents an

electronic device, like for example a resistor, a bipolar transistor, an amplifier etc. As you can

see graphically symbols are built with lines, rectangles, polygons and texts, the graphical

primitives shown before. In the picture below some components are placed in a schematic

window. Components are instances of symbols. For example you see three placements of the

'npn' bipolar transistor symbol. Like in C++, where objects are instances of classes, here

components are instances of symbols.

Symbols (like schematic drawings) are stored in xschem libraries. For XSCHEM a library is just

a directory placed under the XSCHEM_LIBRARY_PATH directory, see the installation slide. A

symbol is stored in a .sym file.

user:~$ cd .../share/xschem/xschem_library/

user:xschem_library$ ls

devices

user:xschem_library$ cd devices

user:devices$ ls *.sym

ammeter.sym generic.sym noconn.sym

switch_hsp.sym

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/install_xschem.html

XSCHEM 0.29 Manual and Tutorials

27

arch_declarations.sym gnd.sym npn.sym

switch.sym

architecture.sym ind.sym opin.sym

title.sym

assign.sym iopin.sym package_not_shown.sym

tline_hsp.sym

attributes.sym ipin.sym package.sym

use.sym

bus_connect_not_shown.sym isource_arith.sym param_agauss.sym

vccs.sym

bus_connect.sym isource_pwl.sym param.sym

vcr.sym

capa.sym isource.sym parax_cap.sym

vcvs.sym

cccs.sym k.sym pmos3.sym

vdd.sym

ccvs.sym lab_pin.sym pmos4.sym

verilog_delay.sym

connect.sym lab_wire.sym pmosnat.sym

verilog_timescale.sym

delay_hsp.sym launcher.sym pnp.sym

vsource_arith.sym

delay_line.sym netlist_at_end.sym port_attributes.sym

vsource_pwl.sym

delay.sym netlist_not_shown.sym res.sym

vsource.sym

diode.sym netlist.sym spice_probe.sym

zener.sym

flash_cell.sym nmos3.sym spice_probe_vdiff.sym

generic_pin.sym nmos4.sym switch_hsp_pwl.sym

user:devices$ cd ...share/doc/xschem/

user:xschem$ ls

examples pcb

To place a symbol in the schematic window press the 'Insert' key. A file chooser pops up, go

to the xschem devices directory (.../share/xschem/xschem_library/devices in the

distribution by default) and select a symbol (res.sym for example). The selected symbol will be

instantiated as a component in the schematic at the mouse pointer coordinates.

The best way to understand how a symbol is defined is to analyze an existing one. Load a test

schematic (for example test.sch). Let's consider the resistor symbol. Use the Insert key to

place the devices/res.sym symbol.

XSCHEM 0.29 Manual and Tutorials

28

Use the file selector dialog to locate res.sym.

XSCHEM 0.29 Manual and Tutorials

29

Now select the resistor by left-clicking on it (it will turn to grey color)

XSCHEM 0.29 Manual and Tutorials

30

After selecting the component (component is an instance of a symbol) descend into its symbol

definition by pressing the 'i' key. XSCHEM will load the devices/res.sym file and show it in

the drawing window. Before descending it asks if you want to save the parent schematic drawing

before loading the resistor symbol. Answer 'yes'.

XSCHEM 0.29 Manual and Tutorials

31

The image above is the 'symbol definition', you can now select individual graphic elements that

represent the symbol, lines, rectangles and text. Normally a symbol contains some pins, these are

just rectangles drawn on the 'pin' layer, and some graphics / descriptive text. Another

fundamental part of symbols are properties. Properties are text strings that define attributes of the

symbol, for example:

 The name of the connection pins

 The type of the symbol (spice primitive, subcircuit, documentation)

 The format of the spice/verilog/VHDL netlist for the symbol

We will return on symbols after explaining properties.

</body> </html>

XSCHEM 0.29 Manual and Tutorials

32

XSCHEM PROPERTIES

Properties are text strings that are associated to XSCHEM objects. All graphic primitives support

properties.

 Wires

 Lines

 Rectangles

 Texts

 Symbols

Consider for example the res.sym symbol (you may open it with the File->Open menu item) if

you click inside one of the red pins and press the 'edit property' bindkey 'q' a dialog box shows

the property string associated with the selected pin:

XSCHEM 0.29 Manual and Tutorials

33

The name=p dir=inout propagate_to=1 pinnumber=1 property string tells that the selected

pin name is 'p', this will be the symbol positive pin name in the produced netlist. The property

string also defines a dir attribute with value inout. This tells XSCHEM that electrically this is

an input/output pin. This is important when producing VHDL/verilog netlists. The

propagate_to=1 tells XSCHEM that when we select a wire attaced to this pin (which is located

at index 0 in xschem) the highlight will propagate to the other pin (with index 1). To view the

xschem index of a pin click and hold the mouse on it, the index will be shown as n= <number>

in the bottom status line:

The pinnumber=1 attribute is used when exporting to pcb software (via the tEDAx netlist) and

tells to which pin number on the resistor footprint this positive pin is bound. The second

(bottom) pin property string is name=m dir=inout propagate_to=0 pinnumber=2 and this

defines the negative pin. The text primitives also have properties. For texts the property string

may be used to specify font and the layer to use for displaying text.

XSCHEM 0.29 Manual and Tutorials

34

GLOBAL PROPERTIES

If you click outside of any displayed graphics in XSCHEM the selection set will be cleared.

Clicking the edit property 'q' key when nothing is selected will display the global property

string of the schematic (.sch) or symbol window (.sym).

There is actually one different global property string defined for any available netlisting modes,

so if XSCHEM is set to produce SPICE netlists the SPICE global property string is displayed.

So, in addition to properties associated to graphical objects and symbols, we also have properties

associated to schematic (.sch) and symbol files (.sym)

XSCHEM 0.29 Manual and Tutorials

35

The format attribute defines the format of the SPICE netlist. The SPICE netlist element line

starts with the symbol name (in this case a resistor so 'rxxxxx'), the list of pins, the resistor value

and a multiplicity factor (m).

@pinlist will resolve to the parent nets attached to the resistor nodes, in the order they appear in

the symbol (in this example; first node = 'p', second node = 'm').

We will return on component instantiation later, but for now, considering the following picture:

XSCHEM 0.29 Manual and Tutorials

36

The @name will expand to R0, @pinlist for the R0 component will expand to POS NEG.

@value resolves to the resistor value assigned in component instantiation. The template

attribute defines default values if component instantiation does not define values for them.

If you want to add a pin to an existing symbol you may copy one of these. Select a pin, press the

copy 'c' bindkey and place a new copy of it somewhere.

After copying the pin you may change its properties, for example you will change its property

string to something like: name=body dir=in (just as an example).

XSCHEM 0.29 Manual and Tutorials

37

Note that pins in symbols are nothing more than rectangles drawn with the pin layer; instead of

copying an existing one you may create it from scratch, select the pin layer from the Layers

menu, point the mouse where you want to place the pin, press the 'r' bindkey and drag the

mouse to the desired pin size. There is no inherent limit or assumption on pin sizes, you are

allowed to create any rectangular/square sizes. After placing the rectangle you must create a

property string by selecting it and pressing the 'q' bindkey. An empty string is shown in the

dialog. Add a valid string as explained and you are all done.

PIN ORDERING

An important aspect for symbols is the order of the pins when producing the netlist. There are

some rules in the order for example in SPICE netlist syntax; for example a Bipolar transistor has

3 pins and should be in a specific order (collector, base, emitter). When done placing pins on a

newly created symbol you can specify the order by selecting the one that must be the first in the

netlist and hitting the '<shift>S' bindkey; set the number to zero; this will make the selected

pin the first one. Next, select the second pin and again hit '<shift>S', set its number to 1 and so

on. By doing so you have defined a specific pin ordering of the symbol.

XSCHEM 0.29 Manual and Tutorials

38

COMPONENT INSTANTIATION

In the RUN XSCHEM slide some instructions were provided as examples to place a component

in the schematic. Now we will cover the topic in more detail with emphasis on component

properties. Start by opening a test schematic window (you may delete any existing stuff in it if

any).

Now start by inserting a component, consider for example devices/nmos4.sym; press the

Insert key, navigate to the devices design library and open the nmos4.sym symbol.

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/run_xschem.html

XSCHEM 0.29 Manual and Tutorials

39

Now draw some wires on each pin of the nmos; place the mouse pointer on the component pins

and use the 'w' bindkey.

we need now to put labels on wire ends: use the Insert key and locate the

devices/lab_pin.sym symbol. After the lab_pin symbol is placed you can move it by

selecting it with the mouse and pressing the 'm' bindkey. You can also flip ('F') and rotate

while moving ('R') to adjust the orientation. After placing the first one you may copy the others

from it ('c' bindkey). The end result should look like this:

This is what an electrical circuit is all about: a network of wires and components. In this

schematic we have 5 components (4 labels and one mos) and 4 nets. It is not mandatory to put a

wire segment between component pins; we could equally well do this:

XSCHEM 0.29 Manual and Tutorials

40

This circuit is absolutely equivalent to the previous one: it will produce the same device

connectivity netlist.

Now we need to set appropriate labels on the NMOS terminals. This is -again- accomplished

with component properties. Select the wire label on the nmos source pin and press the 'q'

bindkey:

Now, replace the 'xxx' default string in the dialog with a different name (example: SOURCE)

After clicking OK the source terminal will have the right label.

repeat the process for the remaining GATE, DRAIN, BODY terminals;

XSCHEM 0.29 Manual and Tutorials

41

The following picture shows the lab_pin component with its properties and the corresponding

symbol definition with its global properties (remember global properties in the

xschem_properties slide)

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/xschem_properties.html

XSCHEM 0.29 Manual and Tutorials

42

XSCHEM 0.29 Manual and Tutorials

43

when building the netlist XSCHEM will look for wires that touch the red square of the lab_pin

component and name that wires with the component 'lab' property. for example the SPICE netlist

of the circuit will be:

m1 DRAIN GATE SOURCE BODY nmos w=5u l=0.18u m=1

We need now to edit the nmos properties. Select it and press the 'q' bindkey

from the edit properties dialog you see there are 5 attributes with values defined:

 The component name name=m1.

 The spice model to be used in simulation model=nmos.

 The transistor width w=5u.

 The transistor channel length l=0.18u.

 The number of parallel transistors (multiplicity) m=1.

We have never defined a value for these properties. These are the default values defined in the

template attribute in the global nmos4.sym property string.

XSCHEM 0.29 Manual and Tutorials

44

We may want to change the dimensions of the transistor; simply change the w and l attribute

values.

Also the component name may be changed as long as it is unique in the current schematic

window. All simulators require that components are unique, it is not permitted to have 2

components with identical name, so XSCHEM enforces this.

If a name is set that matches an existing component xschem will rename it keeping the first letter

(m in this example) and appending a number (so you might end up in something like m23 if there

are many devices).

the name attribute is unique in the schematic window, and must be placed first in the property

string. The name is also used by xschem to efficiently index it in the internal hash tables.

XSCHEM 0.29 Manual and Tutorials

45

SPECIAL COMPONENTS

General purpose

 devices/ipin.sym
 devices/opin.sym
 devices/iopin.sym

These components are used to name a net or a pin of another component. They do not

have any other function other than giving an explicit name to a net.

 devices/lab_pin.sym
 devices/lab_wire.sym
 devices/launcher.sym
 devices/architecture.sym
 devices/code.sym

This symbol is used to place simulator commands into a schematic.

Spice netlist special components

 devices/netlist.sym
 devices/netlist_not_shown.sym

XSCHEM 0.29 Manual and Tutorials

46

Verilog netlist special components

 devices/verilog_timescale.sym

VHDL netlist special components

 devices/use.sym
 devices/package.sym
 devices/package_not_shown.sym
 devices/arch_declarations.sym
 devices/attributes.sym
 devices/port_attributes.sym
 devices/generic_pin.sym
 devices/generic.sym

XSCHEM 0.29 Manual and Tutorials

47

SYMBOL PROPERTY SYNTAX

GENERAL RULES

For symbols a global property string (to show it press 'q' when nothing is selected). defines at

least 3 attributes:

 type defines the the type of symbol. Normally the type attribute describes the symbol

and ignored by XSCHEM, but there are some special types:

o subcircuit: the symbol has an underlining schematic representation, when

producing the netlist XSCHEM has to descend into the corresponding schematic.

This will be covered in the subcircuits chapter.

o primitive: the symbol has a schematic representation but the netlister will not

use it. This is very useful if you want to netlist a symbol using only the format

(or vhdl_format or verilog_format depending on the netlist type) attribute or

use the underlying schematic. By setting the attribute back to subcircuit you

can quickly change the behavior.

o label: the symbol is used to label a net. These type of symbols must have one

and only one pin, and the template string must define a lab attribute that is passed

from component instantiation

o netlist_commands: the symbol is used to place SPICE commands into a spice

netlist. It should also have a value attribute that may contain arbitrary text that is

copied verbatim into the netlist. More on this in the netlist slide.

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/...

XSCHEM 0.29 Manual and Tutorials

48

Only symbols of type subcircuit or primitive may be descended into with the 'e'

bindkey if they have a schematic view.

 format:The format attribute defines the syntax for the SPICE netlist. the @ character is a

'substitution character', it means that the token that follows is a parameter that will be

substituted with the value passed at component instantiation. If no value is given there a

value will be picked from the attribute declared in the template string.

The @pinlist is a special token that will be substituted with the name of the wires that

connect to symbol pins, in the order they are created in the symbol. See the pin ordering

section in the xschem properties slide. if the order of pins for a NMOS symbol is for

example, d,g,s,b, then @pinlist will be expanded when producing a netlist to the list of

nets that connect to the symbol drain, gate, source, body respectively. There is also a

special way to define single pins: @@d for example will be replaced by XSCHEM with the

net that connects to the d pin of the symbol. so for example @pinlist is equivalent to

@@d @@g @@s @@b. However using @pinlist and setting the correct pin ordering in the

symbol pins will make netlist generation faster. This is important for very big

components with lot of pins, and @pinlist is the default when symbol is generated

automatically (Symbol ->Make symbol menu of <Shift>A key).

 template: Specifies default values for symbol parameters

The order these attributes appear in the property string is not important, they can be on the same

line or on different lines:

type=nmos format="@name @pinlist @model w=@w l=@l m=@m" template="name=m1

model=nmos w=5u l=0.18u m=1"

format="@name @pinlist @model w=@w l=@l m=@m"

template="name=m1 model=nmos w=5u l=0.18u m=1"

type=nmos

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/xschem_properties.html

XSCHEM 0.29 Manual and Tutorials

49

As you see double quotes are used when attribute values have spaces. For this reason if double

quotes are needed in an attribute value they must be escaped with backslash \"

since the symbol global property string is formatted as a space separated list of

attribute=value items, if a value has spaces in it it must be enclosed in double quotes, see for

example the symbol template attribute: template="name=m1 model=nmos w=5u l=0.18u m=1"

or the the format attribute: format="@name @pinlist @model w=@w l=@l m=@m". As a direct

consequence a literal double quote in property strings must be escaped (\")

ATTRIBUTE SUBSTITUTION

XSCHEM uses a method for attribute substitution that is very similar to shell variable expansion

done with the $ character (for example $HOME --> /home/user) The only difference is that

XSCHEM uses the '@' character. The choice of '@' vs '$' is simply because in some simulation

netlists shell variables are passed to the simulator for expansion, so to avoid the need to escape

the '$' in property strings a different and less used character was chosen.

A literal @ must be escaped to prevent it to be interpreted as the start of a token to be substituted

(\@). Attribute substitution takes place in symbol format attribute and in every text, as shown in

below picture.

OTHER PREDEFINED SYMBOL ATTRIBUTES

 vhdl_ignore
 spice_ignore
 verilog_ignore

These 3 attributes tell XSCHEM to ignore completely the symbol in the respective netlist

formats.

 vhdl_stop
 spice_stop

XSCHEM 0.29 Manual and Tutorials

50

 verilog_stop

These 3 attributes will avoid XSCHEM to descend into the schematic representation of

the symbol (if there is one) when building the respective netlist format. For example, if

an analog block has a schematic (.sch) file describing the circuit that is meaningless when

doing a VHDL netlist, we can use a vhdl_stop=true attribute to avoid descending into

the schematic. Only the global property of the schematic will be netlisted. This allows to

insert some behavioral VHDL code in the global schematic property that describes the

block in a way the VHDL simulator can understand.

 place

this attribute is only useable in netlist_commands type symbols (netlist.sym,

code.sym,...) if set to end it tells XSCHEM that the component instance of that symbol

must be netlisted at the end, after all the other elements. This is sometimes needed for

SPICE commands that must ge given at the end of the netlist. This will be explained

more in detail in the netlisting slide.

 generic_type

generic_type defines the type of parameters passed to VHDL components. Consider the

following MOS symbol definition; the model attribute is declared as string and it will

be quoted in VHDL netlists.

the resulting netlist is shown here, note that without the generic_type attribute the

irf5305 string would not be quoted.

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/...

XSCHEM 0.29 Manual and Tutorials

51

entity test2 is

end test2 ;

architecture arch_test2 of test2 is

signal d : std_logic ;

signal s : std_logic ;

signal g : std_logic ;

begin

x3 : pmos3

generic map (

 model => "irf5305"

)

port map (

 d => d ,

 g => g ,

 s => s

);

end arch_test2 ;

 extra

This property specifies that some parameters defined in the format string are to be

considered as additional pins. This allows to realize inherited connections, a kind of

hidden pins with connections passed as parameters. Example of a symbol definition for

the following cmos gate:

the symbol property list defines 2 extra pins , VCCPIN and VSSPIN that can be assigned

to at component instantiation. The extra property tells XSCHEM that these 2 parameters

are connection pins and not parameters and thus must not be declared as parameters in

the .subckt line in a spice netlist:

type=subcircuit

vhdl_stop=true

format="@name @pinlist @VCCPIN @VSSPIN @symname wn=@wn ln=@ln wp=@wp

lp=@lp m=@m"

template="name=x1 m=1

+ wn=30u ln=2.4u wp=20u lp=2.4u

XSCHEM 0.29 Manual and Tutorials

52

+ VCCPIN=VCC VSSPIN=VSS"

extra="VCCPIN VSSPIN"

generic_type="m=integer wn=real ln=real wp=real lp=real VCCPIN=string

VSSPIN=string"

verilog_stop=true

with these definitions the above schematic will be netlisted as:

**.subckt prova1

x2 G_y G_a G_b G_c VCC VSS lvnand3 wn=1.8u ln=0.18u wp=1u lp=0.18u m=1

**.ends

* expanding symbol: customlogicLib/lvnand3 # of pins=4

.subckt lvnand3 y a b c VCCPIN VSSPIN

wn=30u ln=2.4u wp=20u lp=2.4u

*.opin y

*.ipin a

*.ipin b

*.ipin c

m1 net2 a VSSPIN VSSPIN nlv w=wn l=ln geomod=0 m=1

m2 y a VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm2 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp

+31u)'

m3 y b VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm3 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp

+31u)'

m6 y c net1 VSSPIN nlv w=wn l=ln geomod=0 m=1

m4 y c VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm4 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp

+31u)'

m5 net1 b net2 VSSPIN nlv w=wn l=ln geomod=0 m=1

.ends

Without the extra property in the cmos gate symbol the following incorrect netlist will

be produced:

**.subckt prova1

x2 G_y G_a G_b G_c VCC VSS lvnand3 wn=1.8u ln=0.18u wp=1u lp=0.18u m=1

**** begin user architecture code

**** end user architecture code

**.ends

* expanding symbol: customlogicLib/lvnand3 # of pins=4

.subckt lvnand3 y a b c

wn=30u ln=2.4u wp=20u lp=2.4u

VCCPIN=VCC VSSPIN=VSS

*.opin y

*.ipin a

*.ipin b

*.ipin c

m1 net2 a VSSPIN VSSPIN nlv w=wn l=ln geomod=0 m=1

XSCHEM 0.29 Manual and Tutorials

53

m2 y a VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm2 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp

+31u)'

m3 y b VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm3 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp

+31u)'

m6 y c net1 VSSPIN nlv w=wn l=ln geomod=0 m=1

m4 y c VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm4 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31u)' pj='2*(wp +57u)+2*(lp

+31u)'

m5 net1 b net2 VSSPIN nlv w=wn l=ln geomod=0 m=1

**** begin user architecture code

**** end user architecture code

.ends

as you can see the VSSPIN and VCCPIN are listed as parameters and not as pins in the

netlist.

 dir

Defines the direction of a symbol pin. Allowed values are in, out, inout.

 global

XSCHEM 0.29 Manual and Tutorials

54

a global=1 property in a label type symbol will declare the corresponding net as

'global'. Global nets in spice netlists are like global variables in a C program, these nets

are accessible at any hierarchical level without the need of passing them through pin

connections.

 spice_netlist
 verilog_netlist
 vhdl_netlist

If any of these 3 properties if set to true the symbol will be netlisted in the specified

format. This is only valid if the split file netlisting mode is active (Options -> Split

netlist). This is very rarely used but is required in mixed mode simulations, where part

of the system will be handled by an analog simulator (spice) and another part of the

system by a digital Verilog / VHDL simulator.

 verilog_format

This is the Verilog equivalent of the format property for Spice primitives. This is a valid

definition for a 2 input inverted XOR gate:

verilog_format="xnor #(@risedel , @falldel) @name (@@Z , @@A , @@B

);"

XSCHEM 0.29 Manual and Tutorials

55

 vhdl_format

same as above for VHDL primitives.

PREDEFINED SYMBOL VALUES

 @symname

This expands to the name of the symbol

 @pinlist

This expands to the list of nets that connect to symbol pins in the order they are set in the

symbol

 @@pin

This expands to the net that connect to symbol pin named pin. This substitution takes

place only when producing a netlist (Spice, Verilog, VHDL, tEDAx) so it is allowed to

use this value only in format,vhdl_format, tedax_format or verilog_format

attributes (see Netlisting slide)

 @#n

This expands to the net that connect to symbol pin at position n in the XSCHEM internal

storage. This substitution takes place only when producing a netlist (Spice, Verilog,

VHDL, tEDAx) so it is allowed to use this value only in format,vhdl_format,

tedax_format or verilog_format attributes (see Netlisting slide)

This method of accessing a net that connects to a pin is much faster than previous one

since XSCHEM does not need to loop through symbol pin names looking for a match.

Example: @#2: return net name that connects to the third pin of the symbol (position 2).

 @#n:pin_attribute

This expands to the value or property pin_attribute defined in the pin at position n in

the XSCHEM internal storage. This method of looking up properties is very fast.

Example: @#0:pinnumber: This expands to the value of the pinnumber defined in pin

object at position 0 in the xschem internal ordering. This format is very useful for slotted

devices where the actual displayed pin number depends on the slot information defined in

the instance name (example: U1:2, slot number 2 of IC U1). These tokens may be placed

as text in the symbol graphic window, not in format strings.

 @sch_last_modified

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/netlisting.html
http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/netlisting.html

XSCHEM 0.29 Manual and Tutorials

56

this indicates the last modification time of the .sch file of the symbol.

 @sym_last_modified

this indicates the last modification time of the .sym file of the symbol.

 @time_last_modified

this indicates the last modification time of the schematic (.sch) containing the symbol

instance.

 @schname

this expands to the name of the schematic (.sch) containing the symbol instance.

 @prop_ptr

this expandes to the entire property string passed to the component.

 @schprop

this expandes to the spice global property string of the schematic containing the symbol

 @schvhdlprop

this expandes to the VHDL global property string of the schematic containing the symbol

 @schverilogprop

this expandes to the Verilog global property string of the schematic containing the

symbol

XSCHEM 0.29 Manual and Tutorials

57

COMPONENT PROPERTY SYNTAX

Component property strings can be set in the usual way with the 'q' on a selected component

instance or by menu Properties --> Edit

The dialog box allows to change the property string as well as the symbol reference. The

property string is essentially a list of attribute=value items. As with symbol properties if a

value has white space it should be double-quoted. The following property definitions are

identical:

name=mchanged_name model=nmos w=20u l=3u m=10

name="mchanged_name" model="nmos" w="20u" l="3u" m="10"

Given the role of the " character, if quoted values are needed escapes must be used, like in the

following example where the model name will be with quotes in netlist:

name="mchanged_name" model="\"nmos\"" w="20u" l="3u" m="10"

XSCHEM 0.29 Manual and Tutorials

58

or

name="mchanged_name" model=\"nmos\" w="20u" l="3u" m="10"

the resulting SPICE netlist will be:
mchanged_name DRAIN GATE SOURCE BODY "nmos" w=20u l=3u m=10

There is no limit on the number of attribute=value items, each attribute should have a

corresponding @attribute in the symbol definition format, but this is not a requirement. There

are a number of special attributes as we will see later.

Important: a name=<inst_name> item is mandatory and must be placed before any other

attributes in component property string. The name attribute is used by XSCHEM -among other

things- for fast indexing the component. If <inst_name> is already used in another component

XSCHEM will auto-rename it to a unique name preserving the first letter (which ts a device type

indicator for SPICE like netlists).

PREDEFINED COMPONENT ATTRIBUTES

 name

This defines the name of the instance. Must be the first attribute=value in the

component property string. Names are unique, so if for example multiple MOS

components are placed in the design one should be named m1 and the second m2 or

anything else, provided the names are different. XSCHEM enforces this, if a name is

given that already exist in the current schematic it will be renamed. Normally the

template string defines a default name for a given component, and expecially for SPICE

compatibility, the first character must NOT be changed. For example, the default name

for a MOS transistor is m1, it can be renamed for example to mcurr_source but not for

example to dcurr_source. XSCHEM does not enforce that the first character is

preserved, it's up to the designer to keep it consistent with the component type.

 embed

When the embed=true is set on a component instance the corresponding symbol will be

saved into the schematic (.sch) file on the next save operation. This allows to distribute

schematic files that contain the used symbols so these will not depend on external library

symbols. When this attribute is set on a component instance, all instances in the

schematic referring to the same symbol will use the embedded symbol definition. When

descending into an embedded symbol, any changes will be local, meaning that no library

symbol will be affected. The changes will be saved using the embedded tag ([...]) into

the schematic file. Removing this attribute will revert to external symbols after saving

and reloading the schematic file.

 url

XSCHEM 0.29 Manual and Tutorials

59

This attribute defines a location (web page, file) that can be viewed when hitting the

<shift>H key (or <Alt> left mouse buttoni) on a selected component. This is very

useful to link a datasheet to a component, for example. The default program used to open

the url is xdg-open. this can be changed in the ~/xschemrc configuration file with the

launcher_default_program variable. url can be an http link or a local file that has a

default association known to xdg-open.

 program

this attribute can be used to specify an application to be used to open the url link, if the

default application has to be changed or the file type is unknown. for example

program=evince may be given to specify an application for a pdf file specified with url

 tclcommand

this can be any tcl statement (or group of statements separated by semicolons) including

all xschem-specific commands, the statement will be executed when pressing the

<shift>H key (or <Alt> left mouse button) on the selected instance.

The tclcommand and url properties are mutually exclusive.

 only_toplevel

XSCHEM 0.29 Manual and Tutorials

60

this attribute is valid only on netlist_commands type symbols and specifies that the

symbol should be netlisted only if it is instantiated in the top-most hierarchy. This is very

usefull for spice commands. Spice commands are placed in a special netlist component

as we will see and are meaningfull only when simulating the block, but should be skipped

if the component is simulated as part of a bigger system which has its own (at higher

hierarchy level) netlistcomponent for Spice commands.

 place

This place=end attribute is only valid only for netlist_commands type symbols, and

tells XSCHEM that this component must be netlisted last. This is necessary for some

spice commands that need to be placed after the rest of the netlist.

 spice_ignore

This tells XSCHEM that for SPICE netlist this component will be completely ignored.

 verilog_ignore

This tells XSCHEM that for Verilog netlist this component will be completely ignored.

 vhdl_ignore

This tells XSCHEM that for VHDL netlist this component will be completely ignored.

 sig_type

XSCHEM 0.29 Manual and Tutorials

61

For VHDL type netlist, this tells that the current label names a signal (or constant) of type

sig_type. For example a label can be placed with name TEST and sig_type=BIT. The

default type for VHDL if this property is missing is std_logic. The following picture

shows the usage of sig_type and the resulting VHDL netlist. This property is applicable

only to label type components: ipin.sym, iopin.sym, opin.sym, lab_pin.sym,

lab_wire.sym.

 verilog_type

This is the same as sig_type but for verilog netlisting: can be used to declare a wire or a

reg or any other datatype supported by the verilog language.

 generic_type

generic_type defines the type of parameters passed to VHDL components. Consider the

following examples of placement of generic_pin components in a VHDL design:

XSCHEM 0.29 Manual and Tutorials

62

As you will see in the parameters slide, generics (they are just parameters passed to

components) can be passed also via property strings in addition to using generic_pin

components.

 class

The class attribute is used to declare the class of a VHDL signal, most used classes are

signal and constant. Default if missing is signal.

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/parameters.html

XSCHEM 0.29 Manual and Tutorials

63

CREATING A CIRCUIT SCHEMATIC

To create a new circuit start from an empty window, run xschem and select New Schematic in

the File menu. Suppose we want co create a NAND gate, with two inputs, A and B and one

output, Z. Lets start placing the input and output schematic pins; use the Insert key and locate

the devices/ipin.sym symbol. After placing it change its lab attribute to 'A'

Copy another instance of it and set its lab attribute to B. Next place an output pin

devices/opin.sym and set its lab to Z. The result will be as follows:

Now we need to build the actual circuit. Since we plan to do it in CMOS technology we need

nmos and pmos transistors. Place one nmos from devices/nmos4.sym and one pmos from

devices/pmos4.sym By selecting them with the mouse, moving (m bindkey), copying ('c'

bindkey) place 4 transistors in the following way (the upper ones are pmos4, the lower ones

nmos4):

XSCHEM 0.29 Manual and Tutorials

64

now draw wires to connect together the transistor to form a NAND gate; in the picture i have

highlighted 2 electrical nodes by selecting one wire segment of each and pressing the 'k'

bindkey.

Next we need to place the supply nodes , VCC and VSS. we decide to use global nodes. Global

nodes in SPICE semantics are like global variables in C programs, they are available

everywhere, we do not need to propagate global nodes with pins. We could equally well use

regular pins , as used for the A and B inputs, I am just showing different design styles. Use the

Insert key and place both devices/vdd.sym and devices/gnd.sym Since the default names

are respectively VDD and GND use the edit property bindkey 'q' to change these to VCC and

VSS.

XSCHEM 0.29 Manual and Tutorials

65

we still need to connect the body terminals of the mos transistors. One possibility is to hookup

the two upper pmos transistor terminals to VCC with wires, and the two bottom nmos terminals

to VSS with wires, but just to show different design styles i am planning to use ''by name''

connection with labels. So place a wire label devices/lab_pin.sym and use 4 instances of it to

name the 4 body terminals. Remember, while moving (select and press the 'm' key) you can

flip/rotate using the R/F keys.

XSCHEM 0.29 Manual and Tutorials

66

Finally we must connect the input and output port connectors, and to complete the gate

schematic we decide to use W=8u for the pmos transistors. Select both the pmos devices and

press the edit proprty 'q' key; modify from 5u (default) to 8u.

XSCHEM 0.29 Manual and Tutorials

67

Now do a Save as operation, save it for example in mylib/nand2.sch.

To make the schematic nicer we also add the title component. This component is not netlisted

but is useful, it reports the modification date and the author. Place the devices/title.sym

component. The NAND gate is completed! (below picture also with grid, normally disabled in

pictures to make image sizes smaller).

Normally a cmos gate like the one used in this example is used as a building block (among many

others) for bigger circuits, therefore we need to enclose the schematic view above in a symbol

representation.

Automatic symbol creation

XSCHEM has the ability to automatically generate a symbol view given the schematic view. Just

press the 'a' bindkey in the drawing area of the nand2 gate.

XSCHEM 0.29 Manual and Tutorials

68

After pressing 'OK' a mylib/nand2.sym file is generated. try opening it (File->Open):

As you can see a symbolic view of the gate has been automatically created using the information

in the schematic view (specifically, the input/output pins). Now, this graphic is not really looking

like a nand gate, so we may wish to edit it to make it look better. Delete (by selecting and

pressing the Delete key) all the green lines, keep the red pins, the pin labels and the @symname

and @name texts, then draw a nand shape like in the following picture. To allow you to draw

small segments you may need to reduce the snap factor (menu View->Half snap thresholf)

remember to reset the snap factor to its default setting when done.

XSCHEM 0.29 Manual and Tutorials

69

This completes the nand2 component. It is now ready to be placed in a schematic. Open a test

schematic (for example mylib/test.sch (remember to save the nand2.sym you have just

created), press the Insert key and locate the mylib/nand2.sym symbol. Then insert

devices/lab_pin.sym components and place wires to connect some nodes to the newly

instantiated nand2 component:

This is now a valid circuit. Let's test it by extracting the SPICE netlist. Enable the showing of

netlist window (Options -> Show netlist win, or 'A' key). Now extract the netlist (Netlist

button on the right side of the menu bar, or 'N' key). the SPICE netlist will be shown.

**.subckt test

x1 OUTPUT_Z INPUT_A INPUT_B nand2

**** begin user architecture code

**** end user architecture code

**.ends

* expanding symbol: mylib/nand2 # of pins=3

.subckt nand2 Z A B

*.ipin A

*.opin Z

*.ipin B

m1 Z A net1 VSS nmos w=5u l=0.18u m=1

m2 Z B VCC VCC pmos w=8u l=0.18u m=1

m3 Z A VCC VCC pmos w=8u l=0.18u m=1

m4 net1 B VSS VSS nmos w=5u l=0.18u m=1

**** begin user architecture code

**** end user architecture code

.ends

.GLOBAL VCC

.GLOBAL VSS

.end

This is an example of a hierarchical circuit. The nand2 is a symbol view of another lower level

schematic. We may place multiple times the nand2 symbol to create more complex circuits.

XSCHEM 0.29 Manual and Tutorials

70

By selecting one of the nand2 gates and pressing the 'e' key or menu Edit -> Push

schematic we can 'descend' into it and navigate through the various hierarchies. Pressing

<ctrl>e returns back to the upper level.

This is the corresponding netlist:

**.subckt test

x1 Q SET_BAR QBAR nand2

x2 QBAR CLEAR_BAR Q nand2

**** begin user architecture code

**** end user architecture code

**.ends

XSCHEM 0.29 Manual and Tutorials

71

* expanding symbol: mylib/nand2 # of pins=3

.subckt nand2 Z A B

*.ipin A

*.opin Z

*.ipin B

m1 Z A net1 VSS nmos w=5u l=0.18u m=1

m2 Z B VCC VCC pmos w=8u l=0.18u m=1

m3 Z A VCC VCC pmos w=8u l=0.18u m=1

m4 net1 B VSS VSS nmos w=5u l=0.18u m=1

**** begin user architecture code

**** end user architecture code

.ends

.GLOBAL VCC

.GLOBAL VSS

.end

The advantage of using hierarchy in circuits is the same as using functions in programming

languages; avoid drawing many repetitive blocks. Also the netlist file will be much smaller.

Automatic Component Wiring

When a new symbol is placed there is a function to connect its pins to auto-named nets: select

the symbol, then Press the 'H' key or the Symbol->Attach pins to component instance

menu entry.

The use prefix will prepend the shown prefix to the wire names to be attached to the

component. The default value for the prefix is the instance name followed by an underscore.

The use wire labels will use wire labels instead of pin labels. Wire labels have the text name

field offset vertically to allow a wire to pass through without crossing the wire name. in the

picture below, the first component is wired with use prefix selected and use wire labels not

selected, the second example with use prefix not selected and use wire labels selected. As

you can see in the second example you may draw wires without overstriking the labels.

XSCHEM 0.29 Manual and Tutorials

72

XSCHEM 0.29 Manual and Tutorials

73

CREATING SYMBOLS

creating a new symbol and schematic by cloning

A useful approach to create a new component (both symbol and schematic view) is to 'clone' it

from a similar existing component: after copying a component to a different place in the

schematic, press the edit property bindkey (q key) and set a new name for the symbol, set also

the copy cell checkbox:

After pressing OK a copy (both schematic and symbol views) of the previously selected

component will be created. After this clone operation modifications can be made on the newly

created schematic and symbol views without affecting the original component.

for more info on symbols see the Tutorial

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/tutorial_create_symbol.html

XSCHEM 0.29 Manual and Tutorials

74

COMPONENT PARAMETERS

What makes subcircuits really useful is the possibility to pass parameters. Parametrized

subcircuits are like functions with arguments in a programming language. One single component

can be instantiated with different parameters. Recall the NAND2 gate we designed. It is made of

four MOS transistors. A MOS transistor has at least 2 parameter, channel length (L) and

transistor width (W) that define its geometry. we have 2 NMOS transistors and 2 PMOS

transistors, so we would like to have 4 parameters passed to the NAND gate: P-channel

with/length (WP/LP) and N-channel with/length (WN/LN). So open again the mylib/nand2.sch

nand gate and replace the w=, l= properties with: w=WN l=LN for the two NMOS and w=WP l=LP

for the two PMOS.

TIP: you can select two PMOS at the same time by clicking the second one with the shift key

pressed, so with edit property 'q' key you will change properties for both.

By doing the same for the NMOS transistors we end up with a schematic with fully parametrized

transistor geometry.

XSCHEM 0.29 Manual and Tutorials

75

Now we have to change the mylib/nand2.sym symbol. Save the changes in the nand2 schematic

(<shift>S) and load (Ctrl-o) the nand2 symbol. without selecting anything hit the 'q' key to

edit the symbol global property string. make the changes as shown in the picture.

XSCHEM 0.29 Manual and Tutorials

76

The template attribute defines the default values to assign to WN, LN, WP, LP. The format

string is updated to pass parameters, the replacement character @ is used to substitute the

parameters passed at component instantiation. You may also add some descriptive text ('t') so

you will visually see the actual value for the parameters of the component:

Now close the modified symbol saving the changes. Let's test the placement of the new modified

symbol. Start a new schematic (menu File -> New) and insert (Insert key) the NAND2 gate.

by pressing 'q' you are now able to speciify different values for the geometric parameters:

let's place a second instance (select and 'c' copy key) of the nand gate. set for the second

NAND gate different WN, LN, WP, LP parameters. place some labels on input and outputs and

connect the output of the first NAND gate to one of the inputs of the second NAND gate. Name

the pin labels as in the picture using the edit property 'q' key on selected lab_pin instance

TIP: XSCHEM can automatically place pin labels on a component: just select it and press the

Shift-h key.

XSCHEM 0.29 Manual and Tutorials

77

now save the new schematic ('s' key, save in mylib/test2.sch) If you enable the netlist

window, menu Options->Show netlist win and press the Netlist button in the menu bar you

get the following netlist:

**.subckt test2

x1 Z net1 C nand2 WP=12u LP=0.4u WN=8u LN=0.6u

x2 net1 A B nand2 WP=5u LP=1u WN=3u LN=1.5u

**** begin user architecture code

**** end user architecture code

**.ends

* expanding symbol: mylib/nand2 # of pins=3

.subckt nand2 Z A B WP=8u LP=0.18u WN=5u LN=0.18u

*.ipin A

*.opin Z

*.ipin B

m1 Z A net1 VSS nmos w=WN l=LN m=1

m2 Z B VCC VCC pmos w=WP l=LP m=1

m3 Z A VCC VCC pmos w=WP l=LP m=1

m4 net1 B VSS VSS nmos w=WN l=LN m=1

**** begin user architecture code

**** end user architecture code

.ends

.GLOBAL VCC

.GLOBAL VSS

.end

As you can see there are 2 components placed passing parameters to a nand2 subcircuit. There is

complete freedom in the number of parameters. Any kind parameters can be used in subcircuits

as long as the simulator permits these.

XSCHEM 0.29 Manual and Tutorials

78

EDITOR COMMANDS

Most editing commands are available in the menu, but definitely key-bindings and Mouse

actions are the most effective way to build and arrange schematics, so you should learn at least

the most important ones.

The basic principle in XSCHEM is that first you select something in the circuit then you decide

what to do with the selection. For example, if you need to change an object property you first

select it (mouse click) and then you press the edit property ('q') key. It you need to move

together multiple objects you select them (by area or using multiple mouse clicks with the Shift

key), then you press the move ('m') key.

EDITOR COMMAND CHEATSHEET

This list is available in XSCHEM in the Help menu

 XSCHEM MOUSE BINDINGS

--

LeftButton Clear selection and select a graphic object

 (line, rectangle, symbol, wire)

 if clicking on blank area: clear selection

shift + LeftButton Select without clearing previous selection

ctrl + LeftButton if an 'url' or 'tclcommand' property is defined on

 selected instance open the url or execute the

 tclcommand

LeftButton drag Select objects by area, clearing previous selection

shift + LeftButton drag Select objects by area, without clearing

 previous selection

Ctrl + LeftButton drag Select objects by area to perform a

 subsequent 'stretch' move operation

Shift + Select objects by area without unselecting

Ctrl + LeftButton drag to perform a subsequent 'stretch' move operation

Mouse Wheel Zoom in / out

MidButton drag Pan viewable area

Alt + LeftButton Unselect selected object

Alt + LeftButton drag

 Unselect objects by area

XSCHEM 0.29 Manual and Tutorials

79

RightButton Edit property of object under the mouse

 else edit global schematic / symbol property string

Shift + RightButton Edit property of object under the mouse

 else edit global schematic / symbol property string

 using the specified (or default) text editor.

LeftButton Double click Terminate Polygon placement

 XSCHEM KEY BINDINGS

--

- BackSpace Back to parent schematic

- Delete Delete selected objects

- Insert Insert element from library

- Down Move down

ctrl Enter Confirm closing dialog boxes

- Escape Abort, redraw, unselect

- Left Move right

- Right Move left

- Up Move up

- '!' Break selected wires at any wire or component pin

 connection

- ' ' Pan schematic

- ' ' When drawing lines or wires toggle between

 manhattan H-V, manhattan V-H or oblique path.

- '#' Highlight components with duplicated name (refdes)

ctrl '#' Rename components with duplicated name (refdes)

- '5' View only probes

- 'a' Make symbol from pin list of current schematic

ctrl 'a' Select all

shift 'A' Toggle show netlist

- 'b' Merge file

ctrl 'b' Toggle show text in symbol

- 'c' Copy selected obj.

ctrl 'c' Save to clipboard

shift 'C' Start arc placement

shift+ctrl 'C' Start circle placement

alt 'C' Toggle dim/brite background with rest of layers

ctrl 'e' Back to parent schematic

- 'e' Descend to schematic

alt 'e' Edit selected schematic in a new window

shift+alt 'F' Toggle Full screen

shift 'F' Flip

alt 'f' Flip objects around their anchor points

ctrl 'f' Find/select by substring or regexp

- 'f' Full zoom

shift 'G' Double snap factor

- 'g' Half snap factor

ctrl 'g' Set snap factor

- 'h' Constrained horizontal move/copy of objects

alt 'h' create symbol pins from schematic pins

ctrl 'h' Follow http link or execute command (url, tclcommand

properties)

shift 'H' Attach net labels to selected instance

- 'i' Descend to symbol

alt 'i' Edit selected symbol in a new window

XSCHEM 0.29 Manual and Tutorials

80

shift 'J' Create symbol from pin list

alt+shift 'J' Create labels with 'i' prefix from highlighted

nets/pins

alt 'j' Create labels without 'i' prefix from highlighted

nets/pins

ctrl 'j' Create ports from highlight nets

alt+ctrl 'j' Print list of highlighted nets/pins with label

expansion

- 'j' Print list of highlighted nets/pins

- 'k' Hilight selected nets

ctrl+shift 'K' highlight net passing through elements with

'propagate_to' property set on pins

shift 'K' Unhilight all nets

ctrl 'k' Unhilight selected nets

- 'l' Start line

ctrl 'l' Make schematic view from selected symbol

ctrl 'o' Load schematic

- 'm' Move selected obj.

shift 'N' Hierarchical netlist

- 'n' Netlist

Ctrl 'n' New schematic

Ctrl+Shift 'N' New symbol

shift 'O' Toggle Light / Dark colorscheme

ctrl 'o' Load schematic

- 'p' Pan

shift 'P' Pan, other way to.

alt 'q' Edit schematic file (dangerous!)

- 'q' Edit prop

shift 'Q' Edit prop with vim

ctrl+shift 'Q' View prop

ctrl 'q' Exit XSCHEM

alt 'r' Rotate objects around their anchor points

shift 'R' Rotate

- 'r' Start rect

shift 'S' Change element order

ctrl+shift 'S' Save as schematic

ctrl 's' Save schematic

alt 's' Reload current schematic from disk

ctrl+alt 's' Save-as symbol

- 't' Place text

alt 'u' Align to current grid selected objects

shift 'U' Redo

- 'u' Undo

- 'v' Constrained vertical move/copy of objects

ctrl 'v' Paste from clipboard

shift 'V' Toggle spice/vhdl/verilog netlist

- 'w' Place wire

ctrl 'w' Place polygon. Operation ends by placing last point

over first.

shift 'W' Place wire, snapping to closest pin or net endpoint

ctrl 'x' Cut into clipboard

- 'x' New cad session

shift 'X' Highlight discrepancies between object ports and

attached nets

- 'y' Toggle stretching wires

- 'z' Zoom box

shift 'Z' Zoom in

XSCHEM 0.29 Manual and Tutorials

81

ctrl 'z' Zoom out

- '?' Help

- '&' Join / break / collapse wires

shift '*' Postscript/pdf print

ctr+shift '*' Xpm/png print

alt+shift '*' Svg print

 '-' dim colors

ctrl '-' Test mode: change line width

ctrl '+' Test mode: change line width

 '+' brite colors

- '_' Toggle change line width

- '%' Toggle draw grid

- '=' Toggle fill rectangles

- '$' Toggle pixmap saving

ctrl '$' Toggle use XCopyArea vs drawing primitives for

drawing the screen

- ':' Toggle flat netlist

KEYBIND CUSTOMIZATION

changes to default keybindings may be placed in the ~/.xschem file as in the following

examples:

replace Ctrl-d with Escape (so you won't kill the program :-))

set replace_key(Control-d) Escape

swap w and W keybinds; Always specify Shift for capital letters

set replace_key(Shift-W) w

set replace_key(w) Shift-W

STRETCH OPERATIONS

An important operation that deserves a special paragraph is the Stretch operation. There is

frequently the need to move part of the circuit without breaking connections, for example to

create more room for other circuitry or just to make it look better. The first thing to do is to drag

a selection rectangle with the mouse holding down the Ctrl key, cutting wires we need to

stretch:

XSCHEM 0.29 Manual and Tutorials

82

After selection is done hit the move ('m') key. You will be able to move the selected part of the

schematic keeping connected the wires crossing the selection rectangle:

In our example we needed to move up part of the circuit, the end result is shown in next picture.

Multiple stretch rectangles can be set using the Shift key in addition to the Ctrl key after

setting the first stretch area.

XSCHEM 0.29 Manual and Tutorials

83

PLACE WIRES SNAPPING TO CLOSEST PIN OT NET ENDPOINT

The (uppercase) 'W' bindkey allows to place a wire putting start (and end point, later) to the

closest pin or wire endpoint, this will make it easier to connect precisely without the need to

zoom in all times.

CONSTRAINED MOVE

while creating wires, lines, and moving, stretching, copying objects, pressing the 'h' or 'v' keys

will constrain the movement to a horizontal or vertical direction, respectively.

XSCHEM 0.29 Manual and Tutorials

84

Constrained horizontal move: regardless of the mouse pointer Y position movement occurs on

the X direction only.

XSCHEM 0.29 Manual and Tutorials

85

Unconstrained move: objects follow the mouse pointer in X and Y direction.

XSCHEM 0.29 Manual and Tutorials

86

NETLISTING

XSCHEM has 3 predefined netlisting modes, Spice, Verilog and VHDL. Netlisting mode can be

set in the Options menu (Vhdl, Verilog Spice radio buttons) or with the <Shift>V key. Once a

netlist mode is set, hitting the Netlist button on the top-right of the menu bar or the <Shift>N

key will produce the netlist file in the defined simulation directory. The simulation directory is

one important path that is specified in the xschemrc file, if no one is defined XSCHEM will

prompt for a directory. The path where netlists are produced can be changed with the

Simulation->Set netlist dir menu entry. The netlist filename is cellname.ext where

cellname is the name of the top-level schematic from which the netlist has been generated, and

ext is the file extension:

 spice for spice netlist.

 vhdl for vhdl netlist.

 v for verilog netlist.

EXAMPLE

Consider the following top level schematic, part of the XSCHEM distribution

(examples/poweramp.sch).

XSCHEM 0.29 Manual and Tutorials

87

This schematic is made of some leaf components and some subcircuit components:

 leaf: these componens are 'known' to the simulator, netlist of these blocks is done by

specifying a 'format' attribute in the symbol property string. Examples of leaf components

in the schematic above are voltage sources, resistors, capacitors, dependent sources. The

following are examples of leaf component instantiations in a SPICE netlist:

 c3 VSS VNN 100u m=1

 r11 VPP net1 0.3 m=1

 r9 VNN net2 0.3 m=1

 r19 OUTM FBN '100k' m=1

The format of resistor (and capacitor) SPICE netlist is defined in the format attribute of

the symbol global property:

format="@name @pinlist @value m=@m"

 subcircuit: these components are not base blocks known to the simulator, but are

representation of a more complex block. These components have in addition to the

symbol a schematic representation. In the picture example the mos_power_ampli is a

subcircuit block. These type of components also have a 'format' property that defines a

XSCHEM 0.29 Manual and Tutorials

88

subcircuit call. A subcircuit call specifies the connections of nets to the symbol pins and

the symbol name. The following two subcircuit calls are present in the SPICE netlist:

 x1 OUTM VSSX FBN VPP VNN VSS mos_power_ampli

x0 OUTP INX FB VPP VNN VSS mos_power_ampli

The format of subcircuit type components is also defined in the symbol format attribute:

format="@name @pinlist @symname"

For subcircuits, after completing the netlist of the top level the XSCHEM' netlister will

recursively generate all the netlists of subcircuit components until leaf schematics are reached

that do not instantiate further subcircuits.

...

... (end of top level netlist)

...

* expanding symbol: examples/mos_power_ampli # of pins=6

.subckt mos_power_ampli OUT PLUS MINUS VPP VNN VSS

*.ipin PLUS

*.ipin MINUS

*.ipin VPP

...

...

Other netlist formats

All the concepts explained for SPICE netlist apply for Verilog and VHDL formats. Its up to the

designer to ensure that the objects in the schematic are 'known' to the target simulator. For

example a resistor is normally not used in VHDL or Verilog designs, so unless an appropriate

'format' attribute is defined (for example a rtran device may be good for a verilog resistor with

some limitations). The format attribute for Verilog is called verilog_format and the attribute

for VHDL is vhdl_format

The following example shows two attributes in a NMOS symbol that define the format for

SPICE and for Verilog and some valid default (template) values:

type=nmos

format="@name @pinlist @model w=@w l=@l m=@m"

verilog_format="@verilog_gate #(@del) @name (@@d , @@s , @@g);"

template="name=x1 verilog_gate=nmos del=50,50,50 model=NCH w=0.68 l=0.07 m=1"

generic_type="model=string"

XSCHEM 0.29 Manual and Tutorials

89

NET PROBES

XSCHEM has the ability to hilight a net and propagate the highlight color to all nets or instance

pins attached to the net. It has the ability to follow this net through the hierarchy. This is very

useful in large designs as it makes it easy to see where a net is driven and were the net goes (fan-

out). Highlighting a net is straightforward, click a net and press the 'k' key. If more nets are

selected all nets will be colored with different colors. <Shift>K clears all highlight nets,

<Ctrl>k clears selected nets.

Select some nets...

...press the 'k' key...

XSCHEM 0.29 Manual and Tutorials

90

...all nets are highlighted, select the white net...

XSCHEM 0.29 Manual and Tutorials

91

..press the <Ctrl>k key and white net is un-highlighted...

XSCHEM 0.29 Manual and Tutorials

92

if you descend into component instance x1 (mos_power_ampli) ('e' key) you will see the

highlight nets propagated into the child component.

XSCHEM 0.29 Manual and Tutorials

93

A very useful function is the 'View only probes' mode, ('5' key) that hides everything but the

highlight probes. This is useful in very big VLSI designs to quickly locate start and end point of

nets. Pressing again the '5' key restores the normal view.

XSCHEM 0.29 Manual and Tutorials

94

XSCHEM 0.29 Manual and Tutorials

95

SIMULATION

One of the design goals of XSCHEM is the ability to launch a simulation without additional

manual file editing. For this purpose XSCHEM stores in a schematic not only the circuit but also

the simulator settings and the additional files that are needed. For example there is a

devices/netlist.sym and devices/netlist_not_shown.sym symbol that can be placed in a

schematic acting as a container of text files for all the needed SPICE models and any additional

information to make the schematic ready for simulation.

The devices/netlist_not_shown symbol shown in the picture (with name MODELS) for

example contains all the spice models of the components used in the schematic, this makes the

schematic self contained, no additional files are needed to run a simulation. After generating the

netlist (for example poweramp.spice) the resulting SPICE netlist can be sent directly for

simulation (for example hspice -i poweramp.spice for the Hspice(TM) simulator).

VERILOG SIMULATION

This is a tutorial showing how to run a simulation with XSCHEM. The first important thing to

note is that XSCHEM is just a schematic editor, so we need to setup valid bindings to simulators

in the ~/xschemrc file. For this tutorial we plan to do a Verilog simulation since there is a very

XSCHEM 0.29 Manual and Tutorials

96

good open source simulator available, called Icarus Verilog. There is also a good waveform

viewer called gtkwave that is able to show simulator results. Install these two valuable tools and

setup installation paths in xschemrc:

...

icarus verilog

set iverilog_path $env(HOME)/verilog/bin/iverilog

set vvp_path $env(HOME)/verilog/bin/vvp

set iverilog_opts {-g2012}

...

gtkwave

set gtkwave_path $env(HOME)/gtkwave/bin/gtkwave

...

In the XSCHEM distribution there is one example design, examples/greycnt.sch.

Load this design:

user:~$ xschem examples/greycnt

This testbench has a 8 bit input vector A[7:0] and two output vectors, B[7:0] and C[7:0]. B[7:0]

is a grey coded vector, this mean that if A[7:0] is incremented as a binary number B[7:0] will

increment by changing only one bit at a time. The C[7:0] vector is the reverse transformation

from grey-code to binary, so at the end if simulation goes well C[7:0] == A[7:0]. In this

schematic there are some components, the first one is the xnor gate, the second one is the

assign element. The 'xnor' performs the logical 'Not-Xor' of its inputs, while 'assign' just

propagates the input unchanged to the output, optionally with some delay. This is useful if we

http://iverilog.icarus.com/
https://sourceforge.net/projects/gtkwave

XSCHEM 0.29 Manual and Tutorials

97

want to change the name of a net (putting two labels with different names on the same net is not

allowed, since this is normally an error, leading to a short circuit).

An Ex-Nor gate can be represented as a verilog primitive, so for the xnor gate we just need to

setup a verilog_format attribute in the global property string of the xnor.sym gate:

the 'assign' symbol is much simpler, in this property string you see the definition for SPICE

(format attribute), Verilog (verilog_format) and VHDL (vhdl_format). This shows how a

single symbol can be used for different netlist formats.

XSCHEM 0.29 Manual and Tutorials

98

While showing the top-level testbench greycnt set XSCHEM in Verilog mode (menu Options-

>Verilog radio button, or <Shift>V key) and press the edit property 'q' key, you will see some

verilog code:

This is the testbench behavioral code that generates stimuli for the simulation and gives

instructions on where to save simulation results. If you generate the verilog netlist with the

Netlist button on the right side of the menu bar (or <Shift>N key) a greycnt.v file will be

generated in the simulation directory (${HOME}/xschem_library/simulations is the default

XSCHEM 0.29 Manual and Tutorials

99

path in the XSCHEM distribution, but can be changed with the set netlist_dir

$env(HOME)/simulations in xschemrc file):

`timescale 1ps/1ps

module greycnt (

 output wire [7:0] B,

 output wire [7:0] C

);

reg [7:0] A ;

xnor #(1 , 1) x2 (B[4] , A[5] , A[4]);

xnor #(1 , 1) x3 (B[5] , A[6] , A[5]);

xnor #(1 , 1) x14 (B[6] , A[7] , A[6]);

assign #1 B[7] = A[7] ;

xnor #(1 , 1) x1 (B[1] , A[2] , A[1]);

xnor #(1 , 1) x4 (B[2] , A[3] , A[2]);

xnor #(1 , 1) x5 (B[3] , A[4] , A[3]);

xnor #(1 , 1) x6 (B[0] , A[1] , A[0]);

xnor #(1 , 1) x7 (C[4] , C[5] , B[4]);

xnor #(1 , 1) x8 (C[5] , C[6] , B[5]);

xnor #(1 , 1) x9 (C[6] , C[7] , B[6]);

assign #1 C[7] = B[7] ;

xnor #(1 , 1) x10 (C[1] , C[2] , B[1]);

xnor #(1 , 1) x11 (C[2] , C[3] , B[2]);

xnor #(1 , 1) x12 (C[3] , C[4] , B[3]);

xnor #(1 , 1) x13 (C[0] , C[1] , B[0]);

initial begin

 $dumpfile("dumpfile.vcd");

 $dumpvars;

 A=0;

end

always begin

 #1000;

 $display("%08b %08b", A, B);

 A=A + 1;

 if(A==0) $finish;

end

endmodule

you will recognize the behavioral code right after the netlist specifying the connection of nets to

the xnor and assign gates and all the necessary verilog declarations. If you press the Simulation

button the Icarus Verilog simulator will be executed to compile (iverilog) and run (vvp) the

simulation, a terminal window will show the simulation output, in this case the input vector

A[7:0] and the grey coded B[7:0] vectors are shown. You can quit the simulator log window by

pressing 'q'.

XSCHEM 0.29 Manual and Tutorials

100

If simulation completes with no errors waveforms can be viewed. Press the Waves button in the

top-right of the menu bar, you may add waveforms in the gtkwave window:

XSCHEM 0.29 Manual and Tutorials

101

If the schematic contains errors that the simulator can not handle instead of the simulation log a

window showing the error messages from the simulator is shown:

XSCHEM 0.29 Manual and Tutorials

102

To facilitate the debug you may wish to edit the netlist (Simulation->Edit Netlist) to locate

the error, in the picture below i inserted deliberately a random string to trigger the failure:

As you can see the error is in the behavioral code of the top level greycnt schematic, so edit the

global property ('q' key with no component selected) and fix the error.

XSCHEM 0.29 Manual and Tutorials

103

XSCHEM 0.29 Manual and Tutorials

104

DEVELOPER INFO

GENERAL INFORMATION

XSCHEM uses layers for its graphics, each layer is a logical entity defining graphic attributes

like color and fill style. There are very few graphical primitive objects:

1. Lines

2. Rectangles

3. Open / close Polygons

4. Arcs / Circles

5. Text

These primitive objects can be drawn on any layer. XSCHEM number of layers can be defined at

compile time, however there are some predefiend layers (from 0 to 5) that have specific

functions:

1. Background color

2. Wire color (nets)

3. Selection color / grid

4. Text color

5. Symbol drawing color

6. Pin color

7. General purpose

8. General purpose

9. General purpose

....

20. General purpose

21. General purpose

Although any layer can be used for drawing it is strongly advisable to avoid the background

color and the selection color to avoid confusion. Drawing begins by painting the background

(layer 0), then drawing the grid (layer 1) then drawing wires (nets) on layer 2, then all graphical

objects (lines, rectangles, polygons) starting form layer 0 to the last defined layer.

SYMBOLS

There is a primitive object called symbol. Symbols are just a group of primitive graphic objects

(lines, polygons, rectangles, text) that can be shown as a single atomic entity. Once created a

symbol can be placed in a schematic. The instantiation of a symbol is called 'component'.

XSCHEM 0.29 Manual and Tutorials

105

The above picture shows a resistor symbol, built drawing some lines on layer 4 (green), some

pins on layer 5 (red) and some text. Symbols once created are stored in libraries (library is just a

UNIX directory known to XSCHEM) and can be placed like just any other primitive object

multiple times in a schematic window with different orientations.

XSCHEM 0.29 Manual and Tutorials

106

WIRES

Another special primitive object in XSCHEM is 'Wire', Graphically it is drawn as a line on layer

1 (wires). Wires are drawn only on this layer, they are treated differently by XSCHEM since they

carry electrical information. Electrical connection between components is done by drawing a

connecting wire.

Since wires are used to build the circuit connectivity it is best to avoid drawing lines on layer 1

to avoid confusion, since they would appear like wires, but ignored completely for electrical

connectivity.

PROPERTIES

All XSCHEM objects (wires, lines, rectangles, polygons, text, symbol instance aka component)

have a property string attached. Any text can be present in a property string, however in most

cases the property string is organized as a set of key=value pairs separated by white space. In

addition to object properties the schematic or symbol view has global properties attached. There

is one global property defined per netlisting mode (currently SPICE, VHDL, Verilog, tEDAx).

See the XSCHEM properties section of the manual for more info.

http://repo.hu/projects/xschem/releases/doc-2.9.0/xschem_man/xschem_properties.html

XSCHEM 0.29 Manual and Tutorials

107

COORDINATE SYSTEM

XSCHEM coordinates are stored as double precision floating point numbers, axis orientation is

the same as Xorg default coordinate orientation:

When drawing objecs in XSCHEM coordinates are snapped to a multiple of 10.0 coordinate

units, so all drawn objects are easily aligned. The snap level can be changed to any value by the

user to allow drawing small objects if desired. Grid points are shown at multiples of 20.0

coordinate units, by default.

XSCHEM FILE FORMAT SPECIFICATION

XSCHEM schematics and symbols are stored in .sch and .sym files respectively. The two file

formats are identical, with the exception that symbol (.sym) files do not contain wires and

component instantiations.

every schematic/symbol object has a corresponding record in the file. A single character at the

beginning of a line, separated by white space from subsequent fields marks the type of object:

 v : XSCHEM Version string

 S : Global property associated the .sch/.sym file for SPICE netlisting

 V : Global property associated the .sch/.sym file for VERILOG netlisting

 G : Global property associated the .sch/.sym file for VHDL netlisting

 E : Global property associated the .sch/.sym file for tEDAx netlisting

 L : Line

 B : Rectangle

 P : Open / Closed polygon

 A : Arc / Circle

 T : Text

XSCHEM 0.29 Manual and Tutorials

108

 N : Wire, used to connect together components (only in .sch files)

 C : Component instance in a schematic (only in .sch files)

 [: Start of a symbol embedding, the symbol refers to the immediately preceding

component instance. This tag must immediately follow a component instance (C). See the

example here under. A component symbol is embedded into the schematic file when

saving if the embed=true attribute is set on one of the component instances. Only one

copy of the embedded symbol is saved into the schematic and all components referring to

this symbol will use the embedded definition. When a component has an embedded

symbol definition immediately following, a embed=true is added to the component

property string if not already present.

C {TECHLIB/PCH} 620 -810 0 0 {name=x5 model=PCHLV w=4 l=0.09 m=1

embed=true}

[

G {type=pmos

format="@name @pinlist @model w=@w l=@l m=@m"

verilog_format="@verilog_gate #(@del) @name (@@d , @@s , @@g);"

template=" name=x1 verilog_gate=pmos del=50,50,50 model=PCH w=0.68

l=0.07 m=1 "

generic_type="model=string"

}

V {}

S {}

E {}

L 4 5 20 20 20 {}

L 4 20 20 20 30 {}

L 4 5 -20 20 -20 {}

L 4 20 -30 20 -20 {}

L 4 -20 0 -10 0 {}

L 4 5 -27.5 5 27.5 {11}

L 4 5 -5 10 0 {}

L 4 5 5 10 0 {}

L 4 10 0 20 0 {}

L 18 -2.5 -15 -2.5 15 {}

B 5 17.5 27.5 22.5 32.5 {name=d dir=inout}

B 5 -22.5 -2.5 -17.5 2.5 {name=g dir=in}

B 5 17.5 -32.5 22.5 -27.5 {name=s dir=inout}

B 5 17.5 -2.5 22.5 2.5 {name=b dir=in}

A 4 -6.25 0 3.75 270 360 {}

T {@w/@l*@m} 7.5 -17.5 0 0 0.2 0.2 {}

T {@name} 7.5 6.25 0 0 0.2 0.2 {999}

T {@model} 2.5 -27.5 0 1 0.2 0.2 {layer=8}

T {D} 25 17.5 0 0 0.15 0.15 {layer=13}

T {NF=@nf} -5 -15 0 1 0.15 0.15 {}

]

] : End of an embedded symbol.

the object tag in column 1 is followed by space separated fields that completely define the

corresponding object.

XSCHEM 0.29 Manual and Tutorials

109

VERSION STRING

Example:
v {xschem version=2.8.2_RC3 file_version=1.0}

Two attributes are defined, the xschem version and the file format version. Current file format

version is 1.0. This string is guaranteed to be the first one in XSCHEM .sch and .sym files.

GLOBAL SCHEMATIC/SYMBOL PROPERTIES

Example:
G {type=regulator

format="x@name @pinlist r@symname"

verilog_format="assign @#2 = @#0 ;"

tedax_format="footprint @name @footprint

device @name @symname"

template="name=U1 footprint=TO220"}

Global properties define a property string bound to the parent schematic/symbol file, there is one

global property record per netlisting mode, currently SPICE, VHDL, Verilog, tEDAx.

Normally only 'G' type property strings are used for symbols and define attributes telling

netlisters what to do with the symbol, while global property strings in schematic files

corresponding to the active netlisting mode of XSCHEM are copied verbatim to the netlist.

the object tag (S, V, G, E) is followed by the property string enclosed in curly braces ({...}).

This allows strings to contain any white space and newlines. Curly braces if present in the string

are automatically escaped with the '\' character by XSCHEM when saving data.

Example of the 4 property string records for a schematic file:
G {}

V {assign #1500 LDOUT = LDIN +1;

}

E {}

S {}

in this case only the verilog-related global property has some definition. This is Verilog code that

is copied into the output netlist.

TEXT OBJECT

Example: T {3 of 4 NANDS of a 74ls00} 500 -580 0 0 0.4 0.4 {font=Monospace
layer=4}

This line defines a text object, the first field after the type tag is the displayed text, followed by X

and Y coordinates,rotation, mirror, horizontal and vertical text size and finally a property string

defining some text attributes.

 The displayed text is enclosed in curly braces ({...}) to allow white space. Literal curly

braces must be escaped if present in the saved string. XSCHEM will automatically add

the escapes where needed on save.

 X ad Y coordinates are saved and retrieved as double precision floating point numbers.

XSCHEM 0.29 Manual and Tutorials

110

 Rotation and mirror are integers (range [0:3], [0:1] respectively) that define the

orientation of objects as shown in below picture:

 text X and Y sizes are stored as floating point numbers.

 Finally a property string is stored with the same syntax as the displayed text field.

WIRE OBJECT

Example: N 890 -130 890 -110 {lab=ANALOG_GND}

The net 'N' tag is followed by the end point coordinates x1,y1 - x2,y2 (stored and read as double

precision numbers) and a property string, used in this case to name the net.

LINE OBJECT

Example: L 4 -50 20 50 20 {This is a line on layer 4}

The line 'L' tag is followed by an integer specifying the graphic layer followed by the x1,y1 -

x2,y2 coordinates of the line and a property string.

RECTANGLE OBJECT

Example: B 5 -62.5 -2.5 -57.5 2.5 {name=IN dir=in pinnumber=1}

The 'Box' 'B' tag is followed by an integer specifying the graphic layer followed by the x1,y1 -

x2,y2 coordinates of the rectangle and a final property string. This example defines a symbol pin.

OPEN / CLOSED POLYGON OBJECT

Example: P 3 5 2450 -210 2460 -170 2500 -170 2510 -210 2450 -210 {}

the Polygon 'P' tag is followed by an integer specifying the layer number, followed by the

number of points (integer), the x,y coordinates of the polygon points and the property string

(empty in this example). If the last point is coincident to the first point a closed polygon is

drawn. A 'fill=true' arribute may be given to fill a cloded polygon, in this case a polygon line

looks like:
P 3 5 2450 -210 2460 -170 2500 -170 2510 -210 2450 -210 {fill=true}

XSCHEM 0.29 Manual and Tutorials

111

ARC OBJECT

Example: A 3 450 -210 120 45 225 {}

The Arc 'A' tag is followed by an integer specifying the layer number, followed by the arc x, y

center coordinates, the arc radius, the start angle (measured counterclockwise from the three

o'clock direction), the arc sweep angle (measured counterclockwise from the start angle) and the

property string (empty in this example). Angles are measured in degrees.

COMPONENT INSTANCE

Example: C {pcb/capa} 890 -160 0 0 {name=C4 m=1 value=10u device="tantalium
capacitor"}

Format: C {<symbol reference>} <X coord> <Y coord> <rotation> <flip>
{<attributes>}

The component instance tag C is followed by a string specifying library/symbol, followed by

the x,y coordinates, rotation (integer range [0:3]), mirror (integer range [0:1]), and a property

string defining various attributes including the mandatory name=... attribute.

XSCHEM 0.29 Manual and Tutorials

112

Orientation and mirror meanings are as follows:

EXAMPLE OF A COMPLETE SYMBOL FILE (7805.sym)

G {type=regulator

format="x@name @pinlist r@symname"

verilog_format="assign @#2 = @#0 ;"

tedax_format="footprint @name @footprint

device @name @symname"

template="name=U1 footprint=TO220"}

V {}

S {}

E {}

L 4 -60 0 -50 0 {}

L 4 50 0 60 0 {}

L 4 -50 -20 50 -20 {}

L 4 50 -20 50 20 {}

L 4 -50 20 50 20 {}

L 4 -50 -20 -50 20 {}

L 4 0 20 0 30 {}

B 5 -62.5 -2.5 -57.5 2.5 {name=IN dir=in pinnumber=1}

B 5 -2.5 27.5 2.5 32.5 {name=GND dir=inout pinnumber=2}

B 5 57.5 -2.5 62.5 2.5 {name=OUT dir=out pinnumber=3}

T {@name} -17.5 -15 0 0 0.2 0.2 {}

T {@symname} -17.5 0 0 0 0.2 0.2 {}

T {@#0:pinnumber} -47.5 -2.5 0 0 0.12 0.12 {}

T {@#1:pinnumber} -2.5 12.5 0 0 0.12 0.12 {}

T {@#2:pinnumber} 47.5 -2.5 0 1 0.12 0.12 {}

XSCHEM 0.29 Manual and Tutorials

113

EXAMPLE OF A COMPLETE SCHEMATIC FILE (pcb_test1.sch)

G {}

V {}

S {}

E {}

B 20 270 -550 860 -290 {}

T {3 of 4 NANDS of a 74ls00} 500 -580 0 0 0.4 0.4 {}

T {EXPERIMENTAL schematic for generating a tEDAx netlist

1) set netlist mode to 'tEDAx' (Options menu -> tEDAx netlist)

2) press 'Netlist' button on the right

3) resulting netlist is in pcb_test1.tdx } 240 -730 0 0 0.5 0.5 {}

N 230 -330 300 -330 {lab=INPUT_B}

N 230 -370 300 -370 {lab=INPUT_A}

N 680 -420 750 -420 {lab=B}

N 680 -460 750 -460 {lab=A}

N 400 -350 440 -350 {lab=B}

N 850 -440 890 -440 {lab=OUTPUT_Y}

N 230 -440 300 -440 {lab=INPUT_F}

N 230 -480 300 -480 {lab=INPUT_E}

N 400 -460 440 -460 {lab=A}

N 550 -190 670 -190 {lab=VCCFILT}

N 590 -130 590 -110 {lab=ANALOG_GND}

N 790 -190 940 -190 {lab=VCC5}

N 890 -130 890 -110 {lab=ANALOG_GND}

N 730 -110 890 -110 {lab=ANALOG_GND}

N 730 -160 730 -110 {lab=ANALOG_GND}

XSCHEM 0.29 Manual and Tutorials

114

N 590 -110 730 -110 {lab=ANALOG_GND}

N 440 -460 680 -460 {lab=A}

N 500 -420 680 -420 {lab=B}

N 500 -420 500 -350 {lab=B}

N 440 -350 500 -350 {lab=B}

C {devices/title} 160 -30 0 0 {name=l2 author="Stefan"}

C {pcb/74ls00} 340 -350 0 0 {name=U1:2 risedel=100 falldel=200}

C {pcb/74ls00} 790 -440 0 0 {name=U1:1 risedel=100 falldel=200}

C {devices/lab_pin} 890 -440 0 1 {name=p0 lab=OUTPUT_Y}

C {pcb/capa} 590 -160 0 0 {name=C0 m=1 value=100u device="electrolitic

capacitor"}

C {pcb/74ls00} 340 -460 0 0 {name=U1:4 risedel=100 falldel=200 power=VCC5

url="http://www.engrcs.com/components/74LS00.pdf"}

C {pcb/7805} 730 -190 0 0 {name=U0

url="https://www.sparkfun.com/datasheets/Components/LM7805.pdf"}

C {devices/lab_pin} 490 -190 0 0 {name=p20 lab=VCC12}

C {devices/lab_pin} 940 -190 0 1 {name=p22 lab=VCC5}

C {devices/lab_pin} 590 -110 0 0 {name=p23 lab=ANALOG_GND}

C {pcb/capa} 890 -160 0 0 {name=C4 m=1 value=10u device="tantalium

capacitor"}

C {pcb/res} 520 -190 1 0 {name=R0 m=1 value=4.7 device="carbon resistor"}

C {devices/lab_wire} 620 -460 0 0 {name=l3 lab=A}

C {devices/lab_wire} 620 -420 0 0 {name=l0 lab=B}

C {devices/lab_wire} 650 -190 0 0 {name=l1 lab=VCCFILT}

C {pcb/connector} 230 -370 0 0 {name=CONN1 lab=INPUT_A verilog_type=reg}

C {pcb/connector} 230 -330 0 0 {name=CONN2 lab=INPUT_B verilog_type=reg}

C {pcb/connector} 240 -190 0 0 { name=CONN3 lab=OUTPUT_Y }

C {pcb/connector} 230 -480 0 0 {name=CONN6 lab=INPUT_E verilog_type=reg}

C {pcb/connector} 230 -440 0 0 {name=CONN8 lab=INPUT_F verilog_type=reg}

C {pcb/connector} 240 -160 0 0 { name=CONN9 lab=VCC12 }

C {pcb/connector} 240 -130 0 0 { name=CONN14 lab=ANALOG_GND

verilog_type=reg}

C {pcb/connector} 240 -100 0 0 { name=CONN15 lab=GND verilog_type=reg}

C {devices/code} 1030 -280 0 0 {name=TESTBENCH_CODE only_toplevel=false

value="initial begin

 $dumpfile(\\"dumpfile.vcd\\");

 $dumpvars;

 INPUT_E=0;

 INPUT_F=0;

 INPUT_A=0;

 INPUT_B=0;

 ANALOG_GND=0;

 #10000;

 INPUT_A=1;

 INPUT_B=1;

 #10000;

 INPUT_E=1;

 INPUT_F=1;

 #10000;

 INPUT_F=0;

 #10000;

 INPUT_B=0;

 #10000;

 $finish;

end

assign VCC12=1;

XSCHEM 0.29 Manual and Tutorials

115

"}

C {devices/verilog_timescale} 1050 -100 0 0 {name=s1 timestep="1ns"

precision="1ns" }

XSCHEM 0.29 Manual and Tutorials

116

XSCHEM REMOTE INTERFACE

SPECIFICATION

GENERAL INFORMATIONS

XSCHEM embeds a tcl shell, when running xschem the terminal will present a tcl prompt

allowing to send / get commands through it. Most user actions done in the drawing window can

be done by sending tcl commands through the tcl shell. Since I/O is simply done through

stdin/stdout this allows XSCHEM to be controlled by another application, by piping XSCHEM

commands to XSCHEM stdin and getting XSCHEM answers piped from XSCHEM stdout.

XSCHEM implements a TCL xschem command that accepts additional arguments. This

command implements all the XSCHEM remote interface. Of course all Tck-Tk commands are

available, for example, if this command is sent to XSCHEM: 'wm withdraw .' the xschem main

window will be withdrawn by the window manager, while 'wm state . normal' will show

again the window.

This command: 'puts $XSCHEM_LIBRARY_PATH' will print the content of the

XSCHEM_LIBRARY_PATH tcl variable containing the search path.

XSCHEM 0.29 Manual and Tutorials

117

TUTORIAL: INSTALL XSCHEM

This short tutorial will illustrate all the steps needed to install XSCHEM on a linux system,

getting the files from the SVN repository.

1. Remove all previous xschem related data from old installs, i assume here previous stuff

was in /usr/local, if not change the root prefix accordingly:
2. schippes@mazinga:~$ sudo rm -rf /usr/local/share/xschem/

/usr/local/share/doc/xschem/

3. schippes@mazinga:~$ rm -f ~/xschemrc ~/.xschem/xschemrc

4. Create a build directory (here i use ~/build, choose whatever name you like):
5. schippes@mazinga:~$ mkdir build

6. Go into the build directory
7. schippes@mazinga:~$ cd build

8. Checkout xschem from the svn repository:
9. schippes@mazinga:~/build$ svn checkout svn://repo.hu/xschem/trunk

10. Cd into trunk directory:
11. schippes@mazinga:~/build$ cd trunk

12. Configure xschem. In this tutorial we want xschem to be installed in /usr/local/bin,

xschem data installed in /usr/local/share/xschem, xschem documentation and

example circuits installed in /usr/local/share/doc/xschem, xschem system-wide

component symbols installed in /usr/local/share/xschem/xschem_library and

xschem user configuration stored in user's home directory under ~/.xschem:
13. schippes@mazinga:~/build/trunk$./configure --prefix=/usr/local --

user-conf-dir=~/.xschem \

14. --user-lib-path=~/share/xschem/xschem_library \

15. --sys-lib-path=/usr/local/share/xschem/xschem_library

16. If all required libraries, header files and tools that are needed to build xschem are present

on the system, the configuration will end with this message (details may vary depending

on the host system):

XSCHEM 0.29 Manual and Tutorials

118

17. ...

18. ...

19. --- Generating build and config files

20. config.h: ok

21. Makefile.conf: ok

22. src/Makefile: ok

23.

24.

25. =====================

26. Configuration summary

27. =====================

28.

29. Compilation:

30. CC: gcc

31. debug: no

32. profiling: no

33.

34. Paths:

35. prefix: /usr/local

36. user-conf-dir: ~/.xschem

37. user-lib-path: ~/share/xschem/xschem_library

38. sys-lib-path: /usr/local/share/xschem/xschem_library

39.

40. Libs & features:

41. tcl: -ltcl8.6

42. tk: -ltcl8.6 -ltk8.6

43. cairo: yes

44. xrender: yes

45. xcb: yes

46.

47. Configuration complete, ready to compile.

48.

49. schippes@mazinga:~/build/trunk$

50. Build xschem by running 'make'
51. schippes@mazinga:~/build/trunk$ make

52. If compilation of source files completed with no errors xschem will be ready for

installation:
53. schippes@mazinga:~/build/trunk$ sudo make install

Note that since we are installing in /usr/local we need root rights (sudo) for doing the

installation.

54. Test xschem by launching 'xschem' from the terminal:

XSCHEM 0.29 Manual and Tutorials

119

55. schippes@mazinga:~/build/trunk$ cd

56. schippes@mazinga:~$ xschem

if /usr/local/bin is not in your PATH variable use the full xschem path:

schippes@mazinga:~$ /usr/local/bin/xschem

57. Close xschem (menu File - Exit)

58. Copy the xschemrc file in the trunk/src directory to the ~/.xschem directory. If

~/.xschem does not exist create it with mkdir ~/.xschem
59. schippes@mazinga:~$ cp build/trunk/src/xschemrc ~/.xschem

The ~/.xschem/xschemrc is the user xschem configuration file. You may change it later

to change xschem defaults or add / remove / change component and schematic

directories. For first tests it is recommended to leave xschemrc as it is.

XSCHEM 0.29 Manual and Tutorials

120

60. Run xschem again to try some schematic load tests:
61. schippes@mazinga:~$ xschem

62. Select menu File - Open and navigate to /usr/local/share/doc/xschem/examples:

XSCHEM 0.29 Manual and Tutorials

121

63. Select 0_examples_top.sch and press 'OK':

64. This schematic contains a set of sub-schematics. Select one of them by clicking it with

the left mouse button (test_lm324 in this example) and press the Alt-e key combination:

XSCHEM 0.29 Manual and Tutorials

122

another xschem window will be opened with the schematic view of the selected symbol:

XSCHEM 0.29 Manual and Tutorials

123

65. Click on the lm324 symbol, it can now be edited using the Alt-i key combination:

66. Now close all xschem windows and restart a new xschem instance from terminal:
67. schippes@mazinga:~$ xschem

68. We want to create a simple circuit in this empty schematic window: press the Insert key

(this is used to place components) in the file selector navigate to

XSCHEM 0.29 Manual and Tutorials

124

/usr/local/share/xschem/xschem_library and select res.sym:

XSCHEM 0.29 Manual and Tutorials

125

69. Lets add another component: press Insert key again and navigate to

/usr/local/share/doc/xschem/examples and select lm324.sym:

XSCHEM 0.29 Manual and Tutorials

126

70. Select (click on it) the lm324 symbol and move it by pressing the m key:

71. Place the lm324 component where you want in the schematic by placing the mouse and

clicking the left button:

XSCHEM 0.29 Manual and Tutorials

127

72. The lm324.sym component has a schematic (.sch) representation, while the resistor is a

primitive, it has only a symbol view (.sym). you can see the schematic of the lm324 by

selecting it and pressing Alt-e:

XSCHEM 0.29 Manual and Tutorials

128

73. Close the lm324.sch window and view the symbol view of the resistor by selecting it and

pressing Alt-i:

This concludes the tutorial, if all the steps were successful there is a good

probability that xschem is correctly installed on your system.

XSCHEM 0.29 Manual and Tutorials

129

TUTORIAL: RUN A SIMULATION WITH

XSCHEM

here some instructions to create a schematic and run a ngspice transient sim in XSCHEM:

1. Build and install xschem from svn head.

2. Create some empty directory (in my examples i use ~/x)

3. cd ~/x

4. ~/bin/xschem rlc (use the actual xschem install path). xschem will warn you that the

rlc.sch file does not exist. No problem.

5. Press Insert key

6. Navigate in the file selector to .../share/xschem/xschem_library/devices

7. Select 'capa.sym' and press 'Open'

8. Select the capacitor, press 'm' and place it somewhere

9. Press 'Insert' again and place 'res.sym' and then again 'ind.sym'

10. Again, press 'Insert' and place 'vsource_arith.sym'

11. By selecting (left btn click) and moving ('m') place the components like in this picture:

XSCHEM 0.29 Manual and Tutorials

130

12. Press the right mouse button on the capacitor and set its 'value=' attribute to 50nF:

13. Do the same for the inductor (10mH) and the resistor (1k)

XSCHEM 0.29 Manual and Tutorials

131

14. Set the voltage source VOL to: "'3*cos(time*time*time*1e11)'" (include quotes, single

and double):

XSCHEM 0.29 Manual and Tutorials

132

15. Pressing the 'w' key and moving the mouse you draw wires, wire the components as

shown (press 'w', move the mouse and click, this draws a wire segment):

XSCHEM 0.29 Manual and Tutorials

133

16. Press 'Insert key and place one instance of 'lab_pin', then use the right mouse button to

change its 'lab' attribute to A:

XSCHEM 0.29 Manual and Tutorials

134

17. Move the label as shown, (you can use 'F' to flip and 'R' to rotate), then using 'c' copy this

pin label and edit attributes to create the B and C labels, place all of these as shown:

XSCHEM 0.29 Manual and Tutorials

135

18. Select the 'C' label and copy it as shown here, set its lab attribute to 0 (this will be the 0V

(gnd node))

XSCHEM 0.29 Manual and Tutorials

136

19. Press 'Insert key, place the 'code.sym' symbol, set name and value attributes as follows:

XSCHEM 0.29 Manual and Tutorials

137

20. Cosmetics: add 'title.sym' move the circuit (by selecting it dragging the mouse and

pressing 'm', if needed). Note that you can do a 'stretch move'operation if you need move

components keeping the wires attached; refer to the xschem manual here

21. The circuit is ready for simulation: press 'netlist' the 'rlc.spice' will be generated in current

dir.

22. If ngspice is installed on the system press 'Simulate':

http://repo.hu/projects/xschem/xschem_man/commands.html

XSCHEM 0.29 Manual and Tutorials

138

23. In the simulator window type 'plot a b c':

24. If you set 'Simulation -> Ngspice Batch Spice Simulator' and press 'Simulate' again the

sim will be run in batch mode, a 'rlc.raw' file will be generated and a 'rlc.out' file will

contain the simulator textual output.

XSCHEM 0.29 Manual and Tutorials

139

TUTORIAL: CREATE AN XSCHEM

SYMBOL

In this tutorial we will build a 4011 CMOS quad 2-input NAND symbol. This IC has 4 nand

gates (3 pins each, total 4*3=12 pins + VDD,VSS power pins) This device comes in a dual in

line 14 pin package.

XSCHEM 0.29 Manual and Tutorials

140

XSCHEM 0.29 Manual and Tutorials

141

1. Start xschem giving 4011-1.sym as filename:

XSCHEM 0.29 Manual and Tutorials

142

2. use layer 4 (the default) to draw the following shapes, use l to draw lines and use Shift-

c to draw arcs, use Ctrl-Shift-c to draw circles. Arcs and circles are drawn by

specifying start - end point and a 3rd way point. You will need to change the grid snap to

'5' for drawing the smallest objects using the g key. Be sure to restore the grid snap to the

default value with Shift-g as soon as you are done. Also ensure that the gate terminals

are on grid with the default '10' snap setting. Use the m key after selecting objects to move

them around.

Do NOT forget to reset the grid setting to the default (10) value as soon as you finished

drawing small objects, otherwise the rest of the objects will be all off grid making the

symbol unusable

XSCHEM 0.29 Manual and Tutorials

143

3. Create pins, select layer 5 from the Layers menu. Set grid snap to 2.5 to allow drawing

small rectangles centered on gate terminals. Start from the 'A' input of the nand gate (we

assume A to be the left-top input), then the 'B' input (the lower left input terminal), then

the 'Z' output (the right terminal). If you click and hold the mouse selecting the rectangles

the 'w' and 'h' dimensions are shown. They should be equal to 5. remember to reset the

grid to default 10 when done.

4. Now when no object is selected press q to edit the symbol global attributes. Type the

following text:

5. type=nand
6. tedax_format="footprint @name @footprint
7. device @name @device"
8. template="name=U1 device=CD4011B footprint=\"dip(14)\" numslots=4

power=VCC ground=GND"

9. extra="power ground"
10. extra_pinnumber="14 7"

Instead of the q key the attribute dialog box can also be displayed by pressing the right

mouse button

XSCHEM 0.29 Manual and Tutorials

144

these attributes specify the gate type, the format for tedax netlist, the template attribute

specifies default values for attributes and defines pin connection for VDD and VSS that

are associated to package pins 14 and 7. The device attribute specifies the component

name to be used in the tEDAx netlist (this is usually the name of the IC as shown in the

datasheet). The extra and extra_pinnumber attributes specify extra pin connections that

are implicit, not drawn on the symbol. This is one of the possible styles to handle power

connections on slotted devices.

XSCHEM 0.29 Manual and Tutorials

145

11. Press the t to place some text; set text v and h size to 0.2 and write @name; this will be

replaced with the instance name (aka refdes) when using the symbol in a schematic. Place

a similar string with text @symname and place it under the @name string.

XSCHEM 0.29 Manual and Tutorials

146

12. select the red pins (click the mouse close to the interior side of the rectangle corners) and

press q, set attribute

name=A dir=in pinnumber=1:5:8:12 for the upper left pin, name=B dir=in

pinnumber=2:6:9:13 for the lower left pin, name=Z dir=out pinnumber=3:4:10:11

for the right output pin. As you can see pin numbers 7 and 14 are missing from the list of

pins; they used for VSS and VDD power supplies, which are implicit (no explicit pins).

Since we are creating a slotted device (an IC containing 4 identical nand gates) the

pinnumber attribute for each pin specifies the pin number for each slot, so the following:

name=A dir=in pinnumber=1:5:8:12 specifies that pin A of the nand gate is connected

to package pin 1 for nand slot 1, to package pin 5 for nand slot 2 and so on.i The dir

attribute specifies the direction of the pin; XSCHEM supports in, out and inout types.

These attributes are used mainly for digital simulators (Verilog and VHDL), but

specifying pin direction is good practice anyway.

Instead of the q key the attribute dialog box can also be displayed by placing the mouse

pointer over the pin object and pressing the right mouse button

XSCHEM 0.29 Manual and Tutorials

147

13. We want now to place some text near the gate pins to display the pin number: again, use

the t key and place the following text, with hsize and vsize set to 0.2:

The complicated syntax of these text labels has the following meaning:

o The @ is the variable expansion (macro) identifier, as usual.

o The #0 specifies pin with index 0, this is the first pin we have created, the upper

left nand input. The index of a pin can be viewed by selecting the pin and pressing

Shift-s.

o The pinnumber specifies the attribute we want to be substituted with the actual

value when placing the gate in a schematic as we will see shortly.

XSCHEM 0.29 Manual and Tutorials

148

14. There is another syntax that can be used to display pin numbers, instead of specifying the

pin index in XSCHEM list (that reflects the creation order) you can reference pins by

their name; The only reason to use the previous syntax with pin index numbers is

efficiency when dealing with extremely big symbols (SoC or similar high pin count

chips).

15. The symbol is now complete; save it and close XSCHEM. Now open again xschem with

an empty schematic, for example xschem test.sch. Press the Insert key and place the

4011-1 symbol:

We see that all pin numbers are shown for each pin; this reminds us that this is a slotted

device! slotted devices should specify the slot number in the instance name so, select the

component, press q and change the U1 name attribute to U1:1. You can also remove the

.sym extension in the 'Symbol' entry of the dialog box, for more compactness:

As you can see now the slot is resolved and the right pin numbers are displayed. Now

select and copy the component (use the c key), and change the name attribute of the new

XSCHEM 0.29 Manual and Tutorials

149

copy to U1:3:

XSCHEM 0.29 Manual and Tutorials

150

16. Now draw some wires, for example to create an SR latch as shown, use the w key to draw

wires; when done with the wiring insert a net label by pressing the Insert key and

navigating to .../share/xschem/xschem_library/devices (the XSCHEM system

symbol library) and selecting lab_pin:

Place 4 of these lab_pin symbols and set their lab attribute to S_, R_, Q, Q_

respectively; place the 4 labels as shown (use the Shift-f key to flip the Q, Q_ labels):

XSCHEM 0.29 Manual and Tutorials

151

17. The test circuit for this tutorial is now complete: its time to extract the tEDAx netlist;

press the Shift-A key to enable showing the netlist window, press Shift-v multiple

times to set the netlisting mode as shown in the bottom status bar to tedax, and finally

press the Netlist button located in the top-right region of the window:

This is the resulting netlist you should get:

18. tEDAx v1

19. begin netlist v1 test

20. conn Q U1 8

21. pinslot U1 8 3

22. pinidx U1 8 1

23. pinname U1 8 A

24. conn R_ U1 9

25. pinslot U1 9 3

26. pinidx U1 9 2

27. pinname U1 9 B

28. conn S_ U1 1

29. pinslot U1 1 1

30. pinidx U1 1 1

31. pinname U1 1 A

32. conn Q_ U1 10

33. pinslot U1 10 3

34. pinidx U1 10 3

35. pinname U1 10 Z

36. conn Q_ U1 2

37. pinslot U1 2 1

38. pinidx U1 2 2

XSCHEM 0.29 Manual and Tutorials

152

39. pinname U1 2 B

40. pinslot U1 11 4

41. pinidx U1 11 3

42. pinname U1 11 Z

43. conn Q U1 3

44. pinslot U1 3 1

45. pinidx U1 3 3

46. pinname U1 3 Z

47. pinslot U1 4 2

48. pinidx U1 4 3

49. pinname U1 4 Z

50. pinslot U1 12 4

51. pinidx U1 12 1

52. pinname U1 12 A

53. pinslot U1 13 4

54. pinidx U1 13 2

55. pinname U1 13 B

56. pinslot U1 5 2

57. pinidx U1 5 1

58. pinname U1 5 A

59. conn VCC U1 14

60. pinname U1 14 power

61. pinslot U1 6 2

62. pinidx U1 6 2

63. pinname U1 6 B

64. conn GND U1 7

65. pinname U1 7 ground

66. footprint U1 dip(14)

67. device U1 CD4011B

68. end netlist

This concludes the tutorial; of course this is not a complete circuit, connectors are

missing among other things, but the basics of creating a new component should now be

less obscure.

XSCHEM 0.29 Manual and Tutorials

153

TUTORIAL: Manage XSCHEM design /

symbol libraries

There are 2 ways to describe symbols in xschem,

 first approach: define a XSCHEM_LIBRARY_PATH that is a list of paths to last level

directories containing .sym /.sch files

 second approach: define a XSCHEM_LIBRARY_PATH that is a list of paths one level above

the directories containing .sym/.sch files

In the first approach a 'npn.sym' symbol placed in a schematic will be saved as 'npn.sym' in the

.sch file, when loading back the parent schematic xschem will go through the

XSCHEM_LIBRARY_PATH and look for a directory containing npn.sym.

In the second approach the 'npn.sym' will be saved as 'devices/npn.sym' (assuming devices/

is the directory containing this symbol) . This is because the XSCHEM_LIBRARY_PATH is pointing

to something like /some/path/xschem_library/ and xschem_library/ contains devices/

(names are just given as examples, any dir name is allowed for xschem_library/ and

devices/)

The first approach is preferred by pcb hobbysts, people working on small designs. the second

approach is preferred for big designs where a one level indirection is desired for symbols, so any

symbol in xschem is given as 'libname/symname.sym' instead of just 'symname.sym'

For VLSI / big designs I strongly suggest using the second approach, just as an example i have

the following dirs:

 ~/share/xschem/xschem_library/

 containing:

 devices/

 TECHLIB/

 ~/xschem_library/

 containing:

 stdcell_stef/

 ~/share/doc/xschem/

 containing:

 library_t9/

 dram/

then in my xschemrc i have the following:

set XSCHEM_LIBRARY_PATH \

$env(HOME)/share/xschem/xschem_library:$env(HOME)/share/doc/xschem/:$env(HOME

)/xschem_library

XSCHEM 0.29 Manual and Tutorials

154

You may choose either method, but please be consistent throughout your design.

XSCHEM 0.29 Manual and Tutorials

155

TUTORIAL: Use Bus/Vector notation for

signal bundles / arrays of instances

XSCHEM has the ability to use a compact notation to represent signal bundles. There is no

specific 'bus' entity, in XSCHEM a bus is simply a wire with a label representing a bundle of

bits, the syntax is explained below. Normally a net label assigns a name to a wire, for example

'ENABLE', 'RESET', 'CLK' and so on, however more complex formats are available to describe

multiple bits.

 AAA,BBB,CCC: described a bundle of 3 signals, AAA, BBB, CCC.

 AAA[3:0]: describes the set AAA[3],AAA[2],AAA[1],AAA[0]. The form AAA[3:0] and

AAA[3],AAA[2],AAA[1],AAA[0] are exactly equivalent.

 AAA[1:0],BBB[5:4]: describes the bundle: AAA[1],AAA[0],BBB[5],BBB[4].

 AAA[6:0:2]: describes the bundle AAA[6],AAA[4],AAA[2],AAA[0].

 2*AAA[1:0]: describes the bundle AAA[1],AAA[0],AAA[1],AAA[0].

 AAA[1:0]*2: describes the bundle AAA[1],AAA[1],AAA[0],AAA[0].

 2*(AAA[1:0],BBB): describes the bundle AAA[1],AAA[0],BBB,AAA[1],AAA[0],BBB.

 (AAA[1:0],BBB)*2: describes the bundle AAA[1],AAA[1],AAA[0],AAA[0],BBB,BBB.

All the above notations are perfectly valid label net name attributes.

In a very similar way multiple instances can be placed in a schematic setting the 'name' attribute

to a vector notation.

For example in picture below x22[15:0] represents 16 inverters with names

x22[15],x22[14],...,x22[0].

XSCHEM 0.29 Manual and Tutorials

156

In following picture there is a main 277 bit bus (the vertical thick wire) and a bus ripper symbol

(devices/bus_connect.sym) is used to take a slice of bits from the main bus.

XSCHEM 0.29 Manual and Tutorials

157

XSCHEM 0.29 Manual and Tutorials

158

FAQ

When placing a new component i want a dialog showing the defined libraries

before opening the TCL file selector

Add this to your xschemrc file:

set use_list_dirs 1

I want new instances to get assigned a new unique name automatically.

Add this to your xschemrc file:

set disable_unique_names 0

By default XSCHEM allows instance name (Refdes) duplicates in the schematic. This must be

resolved by the user normally, before exporting any netlist. The Hilight - Highlight

duplicate instance names (k key) menu entry can be used to mark the components that need

to be renamed. The Highlight - Rename duplicate instance names menu entry can be

used to automatically rename the last added components so that they have an unique name.

Using the above mentioned xschemrc option will automatically rename any added refdes that

clashes with existing names.

Why do i have to press 'm' to move a component instead of just click and drag?

XSCHEM is intended to handle very big schematics, mouse drags are used to select a rectangular

portion of the circuit to move / stretch, if a mouse click + drag moves components it would be

very easy to move things instead of selecting things. This happens with geda-gschem for

example:

XSCHEM 0.29 Manual and Tutorials

159

Here i want to select the R7 and R8 resistors, so i place the mouse close to the upper-left R7

boundary and start dragging, but since clicking also selects nearby objects the wire gets selected

and moving the mouse will move the wire.

XSCHEM 0.29 Manual and Tutorials

160

This behavior is considered not acceptable so clicking and dragging will never modify the

circuit. Pressing 'm' (for move) or 'c' (for copy) makes the behavior more predictable and safer. A

new user just needs to get used to it.

XSCHEM 0.29 Manual and Tutorials

161

