TUTORIALS
PREV UP NEXT

Xschem slides [PDF version]
Vi Xschem FSiC2022 pr ntation

All in on f mentation (r .h ith rceforge version with
nfi

INDEX

. What is XSCHEM

. Install XSCHEM

. Run XSCHEM

. XSCHEM elements

. Symbols

. XSCHEM properties

. Component instantiation

. Symbol properties syntax

. Component properties syntax

. Creating a circuit schematic

. Creating symbols

. Component parameters

. Editor commands

. Netlisting

. Net Probes

. Simulation

. Simulation

18. Viewing simulation data with XSCHEM
19. Developer Info, XSCHEM file format specification
20. XSCHEM remote interface specification

TUTORIALS

0O\ N A W

e T T e T e T = S SO
NN Nk W= OO

e Step by step instructions: Install XSCHEM

e Run a simulation with XSCHEM

e Create a symbol with XSCHEM

e Manage XSCHEM design libraries / symbol librares

e Use bus / vector notation for signal bundles / arrays of instances

e Backannotation of Negspice simulation data into xschem

e Use symgen.awk to create symbols from 'djboxsym' compatible text files

e Translate GEDA gschem/lepton-schematic schematics and symbols to xschem.
¢ [Video] Install Xschem, Xschem sky130. skywater-pdk and ngspice: step by step instructions
¢ [Video] Second version. Install Xschem and open pdks for skywater 130 design
¢ [Video] Editing commands and simulation

https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_fsic2022_presentation.pdf
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_fsic2022_presentation.mp4
https://xschem.sourceforge.io/stefan/xschem_man/xschem_man.pdf
https://xschem.sourceforge.io/stefan/xschem_man/xschem_man.pdf
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/install_xschem_sky130_and_ngspice.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/install_xschem_and_open_pdks.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/editing_and_sim.mp4

FAQ

¢ [Video] Editing component attributes

¢ [Video] Copying objects across xschem windows

¢ [Video] Symbols with inherited connections

¢ [Video] Search / replace function

¢ [Video] How to stretch objects

® [Video] Parameters in subcircuits

¢ [Video] Create pins from net labels. fix grid align issues. wires

¢ [Video] Link documentation to components/symbols

¢ [Video] Use rawtoved to show ngspice waveforms in gtkwave

¢ [Video] Run a Verilog simulation with XSCHEM and icarus Verilog

¢ [Video] See logic propagation of nets live in xschem without using a backend simulator
¢ [Video] View Ngspice/Xyce simulation data inside XSCHEM

® [Video] Probe xschem nets into the GAW waveform viewer

® [Video] Probe xschem nets into the BESPICE waveform viewer

¢ [Video] Creating a symbol

¢ [Video] Instantiating schematics instead of symbols (LCC, Local Custom Cell)

¢ [Video] Using more schematic views of a symbol to do simulation at different abstraction levels
¢ [Video] Let components display the name of the net attached to their pins

FAQ

e Common questions about XSCHEM

https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/edit_attributes.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/copy_from_window_to_window.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/inherited_connections.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/search_replace.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/stretch.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/parametric_subckts.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/wires_pins_grid.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/launcher.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/rawtovcd.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/verilog.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_embedded_simulation.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/xschem_graphs.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/probe_to_gaw.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/probe_to_bespice.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/create_symbol.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/LCC.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/multiple_schematics_bound_to_symbol.mp4
https://xschem.sourceforge.io/stefan/xschem_man/video_tutorials/net_name_attribute.mp4

WHAT IS XSCHEM

PREV UP NEXT

WHAT IS XSCHEM

Electronic systems today tend to be generally very complex and a lot of work has to be done from circuit conception to
the validation of the final product. One of the milestones of this process is the creation of the circuit schematic of the
electronic system.

The circuit diagram has to be drawn using an interactive computer program called schematic editor , this is usually a very
first step in the design cycle of the product. Once the schematic has been drawn on the computer, the circuit connectivity
and device list (netlist) can be generated and sent to a circuit simulator (spice, hspice, eldo, just to mention some) for
performing circuit simulation.

So, as you probably guessed, XSCHEM is a schematic capture program that allows to interactively enter an electronic
circuit using a graphical and easy to use interface. When the schematic has been created a circuit netlist can be generated
for simulation. Currently XSCHEM supports four netlist formats:

1. SPICE netlist

2. VHDL netlist

3. VERILOG netlist

4. tEDAX netlist for Printed board editing software like pcb-rnd.

XSCHEM was initially created for VLSI design, not for printed circuit board schematics (PCB), however the recently
added tEDAX netlist format is used to export XSCHEM schematics to pcb-rnd or other tEDAx-aware PCB editors. The
roadmap for XSCHEM development will focus more in the future to build a tight integration with pcb-rnd printed board
editor, joining the CoralEDA ecosystem philosophy.

XSCHEM initial design goal was to handle Integrated Circuit (IC) design and generate netlists for Very Large Scale
digital, analog or mixed mode simulations. While the user interface looks very simple, the netlisting and rendering engine
in XSCHEM are designed from the ground-up to handle in the most efficient way very large designs. Also the user
interaction has no bells and whistles but is the result of doing actual work on big projects in the most efficient way. This is
why for example most of the work is done with bind keys, instead of using context menus or elaborate graphical actions,
simply these things will slow your work if most of your schematics have 5-8 levels of hierarchy and 1000K+ transistors.
Here under a picture of a VLSI SOC (System On Chip) imported in XSCHEM. As you can see the ability of XSCHEM is
to handle really big designs. This has been the primary goal during the whole development of the program. The sample
design showed has more than 10 levels of hierarchy and really big schematics. For each hierarchy level one component is
expanded until the leaf of the tree is reached. :-)

http://repo.hu/projects/pcb-rnd
http://repo.hu/projects/pcb-rnd
http://repo.hu/projects/coraleda

WHAT IS XSCHEM

Toplevel

Top Level of SOC

Il

Level 1

Level2 | P RgRDIRRNTRTIRTTLNNEL"

(T

v
(THTI]
(I

WHAT IS XSCHEM

It is also worth to point out that XSCHEM has nothing to do with GSCHEM, the name similarity is just coincidence.
GSCHEM is another powerful Schematic Capture program, primarily focused on board level (PCB) system design. See
gEDA for more information.

http://wiki.geda-project.org/geda:gaf
http://geda-project.org/

INSTALL XSCHEM

PREV UP NEXT

INSTALL XSCHEM

in order to install the program run the following command:

user:~$ cd xschem-<version>; ./configure

This will make all the necessary checks for required libraries and system tools.

for Debian and Ubuntu systems these are the packages you should check to be installed. Tck/Tk versions may vary on
different systems, 8.4, 8.5, 8.6 versions are all good.

1ibX11-6 libxll-dev
libxrenderl libxrender—-dev
libxcbl libx1ll-xcb-dev
libcairo2 libcairo2-dev
tcl8.6 tcl8.6-dev
tk8.6 tk8.6-dev

flex bison

libxpm4 libxpm-dev

gawk or mawk

If configure ends with no errors we are ready to compile:

user:~$ make

If we want to install xschem and its required files (execute as root if you plan to do a system-wide installation, for
example in /ust/local):

user:~$ make install

This will install all the runtime needed files into the locations previously configured (can be found in Makefile.conf). To
change the default installation prefix (/usr/local), please replace the configure step shown above with:

./configure —--prefix=new/prefix/path

DESTDIR is supported.

For testing purposes xschem can be run and invoked from the build directory xschem—-<version>/src/ without
installation.

user:~$ cd xschem-2.7.0/src && ./xschem

When xschem is running, type puts $XSCHEM_LIBRARY_ PATH in the xschem tcl prompt to know the library search
path.

-Technical information - Detailed XSCHEM startup sequence

Type puts $XSCHEM_SHAREDIR to see the installation path.

Sample user design libraries are provided and installed systemwide under

$ {XSCHEM_SHAREDIR/xschem library/. The XSCHEM_START_WINDOW specifies a schematic to preload at
startup, to avoid absolute paths use a path that is relative to one of the XSCHEM_LIBRARY_PATH directories. XSCHEM
will figure out the actual location. You may comment the definition if you don't want any schematic on startup.

If you need to override system settings, create a ~/ . xschem/xschemrc. The easiest way is to copy the system
installed version from ${prefix }/share/xschem/xschemrc and then make the necessary changes

user:$ mkdir ~/.xschem
user:$ cp <install root>/share/xschem/xschemrc ~/.xschem/xschemrc

-Technical information - Detailed XSCHEM startup sequence

Information here under is not meant to be executed by the user

(@)Y, I SN OS]

\1

.If ——rcfile=<rcfile> is given then source the specified rcfile. Do not load any other rcfile.
.If .. /src/xchem. tcl with respect to current dir is existing and . . /xschem_1library is also existing

then we are starting from a build directory, set XSCHEM_SHAREDIR to <current dir> and also set
XSCHEM_LIBRARY PATHto ../xschem library/devices.

. Else use compile-time (generated from configure script) provided XSCHEM SHAREDIR.

. Source system-wide xschemrc if existing: XSCHEM_SHAREDIR/xschemrc

. If in current dir there is a xschemrc file source it.

. Else if there is a USER_CONF_DIR/xschemrc file source it. XSCHEM_SHAREDIR and USER_CONF_DIR

are preprocessor macros passed at compile time by the configure script. The first one will be overridden only if
executing from a build directory, see item 2.

. If XSCHEM_SHAREDIR not defined --> error and quit.
. Start loading user provided schematic file or start with empty window (or filename specified in

XSCHEM_START WINDOW tcl variable).

RUN XSCHEM

PREV UP NEXT

RUN XSCHEM

Assuming xschem is installed in one of the $ {PATH} search paths just execute:

user:~$ xschem

the xschem window should appear. If xschem is not in the search path then specify its full pathname.

O

File Edit Options View Properties |Layers Tools Symbol Highlight Simulation Waves Simulate Netlist | Help

SNAP: |10 GRID: |20 mouse = -110 -70 - untitled.sch selected: 0

if a filename is given that file will be loaded on startup:

user:~$ xschem .../xschem_library/examples/0_examples_top.sch

XSCHEM COMMAND LINE OPTIONS

xschem - 0_examples_top.sch

File Edit Options View Properties |Layers Tools Symbel Highlight Simulation Waves Simulate Netlist | Help

ART_WINDON

irt. with. ar

UMENTATION

'MW REPO.HU

SMAP: |10 GRID: |20 mouse = 10 -630 - /mnt/x/home/schippes/xschem-repoftrunk/xschem_library/examples/l_examples top.sch selected: 0

XSCHEM COMMAND LINE OPTIONS

xschem accepts short (-h) or long (--help) options:

usage: xschem [options] [schematic | symbol]
Options:
-h —-help Print this help.
-b —-—-detach Detach Xschem from console and fork in the background.
-n —-netlist Do a netlist of the given schematic cell.
-v —-version Print version information and exit.
-V —-vhdl Set netlist type to VHDL.
-S -—-simulate Run a simulation of the current schematc file

(spice/Verilog/VHDL, depending on the netlist
type chosen) .

-w -—-verilog Set netlist type to Verilog.

—-—tcl <tcl_script> Execute specified tcl instructions before any other action,
this can be used to change xschemrc variables.

—-—command <tcl_cmd> Execute specified tcl commands after completing startup.

—-—script <file> Execute specified tcl file as a command script (perhaps with xschem comman
—-—tcp_port <number> Listen to specified tcp port for client connections. (number >=1024).

-1 —-—-no_rcload Do not load any xschemrc file.

-0 <file> Set output path for netlist.

--netlist_path <file>

-N <file> Set name (only name, not path) of top level netlist file.

——netlist_filename <file>

-t —--tedax

-s —-spice

-y ——symbol

-X ——Nno_X

-z ——-rainbow

-W —--waves

-f ——-flat_netlist
-r —-no_readline
-c —-color_ps

——plotfile <file>
——rcfile <file>

-p —-postscript
——pdf
~—~png
——sVg

-g -—-—quit

-1 <file>

—--log <file>

-d <n>

——debug <n>

CREATING A NEW SCHEMATIC

Set netlist type to tEDAx.

Set netlist type to SPICE.

Set netlist type to SYMBOL (used when drawing symbols)
Don't use X (only command mode) .

Use a raibow-looking layer color table.

Show simulation waveforms.

Set flat netlist (for spice format only).

Start without the tclreadline package (this is
necessary if stdin and stdout are to be redirected
for example to /dev/null).

Set color postscript.

Use <file> as output for plot (png, svg, ps).

Use <file> as a rc file for startup instead of the
default xschemrc.

Export pdf schematic.
Export png schematic.
Export svg schematic.
Quit after doing things (no interactive mode) .

Set a log file.

Set debug level: 1, 2, 3,.. C program debug.
-1, -2, -3... TICL frontend debug.

xschem: interactive schematic capture program

Example: xschem counter.sch
the schematic file "“counter.sch' will be loaded.

CREATING A NEW SCHEMATIC

To create a new schematic run xschem and give a non existent filename:

xschem aaa.sch

10

CREATING A NEW SCHEMATIC

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

O =
Unable to open file: test.sch

OK

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = -10 870 - /mntfx/home/schippesfxitest.sch selected: 0

You can save the schematic by pressing '<ctrl shift>s' or by using the menuFile - Save As:

11

CREATING A NEW SCHEMATIC

xschem - test.sch

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

Directory: [mnt/x/home/schippes/x

rlc.sch

File name: Save

Files of type: Schematic files (*.sch) Cancel

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = -100 -110 - /mnt/x/home/schippes/xitest.sch selected: 0

If no filename change is needed you can just use File — Save. Now a new empty schematic file is created. You can
use this test . sch for testing while reading the manual. After exiting XSCHEM you can load directly this schematic
with the following commands, they are all equivalent.

xschem /home/schippes/x/test.sch
or
xschem ${HOME}/schippes/x/test

you can load test . sch when xschem is running by using the load command ' <ctrl>o' key or by menu Open
command. Use the file selector dialog to locate the schematic and load it in. When loading a new file XSCHEM asks to
save the currently loaded schematic if it has been modified.

12

XSCHEM ELEMENTS

PREV UP NEXT

XSCHEM ELEMENTS

WIRES

Wires in XSCHEM are the equivalent of copper traces in printed circuit boards or electrical conductors. Wires are drawn
as lines but the electrical connectivity graph is built by XSCHEM. To draw a wire segment point the mouse somewhere in
the drawing window and press the 'w' key. A rubber wire is shown with one end following the mouse. Clicking the left
mouse button finishes the placement. The following picture shows a set of connected wires. There are many wire
segments but only 3 electrical nodes. XSCHEM recognizes connection of wires and uses this information to build up the
circuit connectivity. All wires are drawn on the 'wire' layer. One electrical node in the picture below has been highlighted
in red (this is a XSCHEM function we will cover later on).

LINES

Lines are just segments that are used for drawing. Lines do not have any electrical meaning, in fact when building the
circuit netlist, lines are completely ignored. XSCHEM uses different layers to draw lines. Each layer has its own color,
allowing to draw with different colors. Lines are placed like wires, but using the '1' key. The 'Layers’' menu allows to
select various different layers (colors) for the line.

13

LINES

File Edit Options View Properties [Layers Tools Symbol Hilight Simulation Waves Simulate Netlist Help

RECTANGLES

Rectangles like Lines are drawable on multiple layers, and also do not carry any electrical information. A specific 'PIN'
layer is used to make pins that are used to interconnect wires and components. Different fill styles (or no fill) can be
defined for each layer. Rectangles are placed with the 'r' bindkey

14

RECTANGLES

POLYGONS

Polygons are paths that can be drawn on any layer. Placements begins with the 'etrl—-w' key and continues as long as
the user clicks points on the drawing area. Placement ends when:

e the last point is coincident to the first point.

¢ or by clicking the right mouse button, for an open polygon.

® or by hitting the Return key, for a closed polygon (this can be done also by clicking the last point coincident to
the first polygon point).

A £ill=true attribute may be given to have the shape filled with the layer fill style.

15

POLYGONS

CIRCLES / ARCS

Arcs may be placed by hitting the Shift—C key. First click the start point, then the end point. Moving the mouse will
show the arc passing thru the 2 points and the mouse waypoint. Clicking will place the arc. Arcs may be modified after
creation by selecting in stretch mode (Ctr1-Buttonl-drag) one of the arc ends or the arc center:

- (end point selected in stretch mode): by starting a move (m) operation and moving the mouse the arc sweep may be
changed.

- (start point selected in stretch mode):by starting a move (m) operation and moving the mouse the start arc angle may be
changed.

- (arch center selected in stretch mode): by starting a move (m) operation and moving the mouse the arc radius may be
changed.

If a circle is needed then use the Ctr1—-Shift—-C key combination.

A fill=true attribute may be given to have the shape filled with the layer fill style.

16

TEXT
TEXT

Text can be placed with the 't ' bindkey. A dialog box appears where the user inputs the text and text size.

SAMPLE TEXT

SAMPLE TEXT

the quick brown fox jumps
over the lazy dog

—
<
Ll
= X
I_
Ll w
1 z
n =
= &
<{
)

the gulck brown fox Jumps
the

The layer property can be used to draw text on a different layer, for example, setting 1layer=6 will draw on cyan
color. A font property is defined to change the default font. A hcenter=true attribute may be set to center text in the
reading direction, while vcenter=true centers text in the perpendicular (to reading) direction. the 2 attributes may be
set both to get full centered text box.

A weight=bold attribute may be given for bold text, while a slant=italic or slant=oblique may specify
italic or slanted text.

A hide=true will make the specified text invisible when the symbol is displayed as a component in a schematic.

17

TEXT

DEFAULT hcenter=true

flip=0
rot= 0

|

hcenter

flip=0
rot= 0

You wil learn in the xschem properties chapter how to set, edit and change object properties.

18

SYMBOLS

Default text

Different layer
and different font

Different layer
and different font

hsize: |2
vsize: |2
props: layer=6 font="Nimbus Mong"

oK

SYMBOLS

Symbols are graphical elements that represent electrical components. A symbol represents an electronic device, like for
example a resistor, a bipolar transistor, an amplifier etc. As you can see graphically symbols are built with lines,
rectangles, polygons and texts, the graphical primitives shown before. In the picture below some components are placed
in a schematic window. Components are instances of symbols. For example you see three placements of the 'npn' bipolar
transistor symbol. Like in C++, where objects are instances of classes, here components are instances of symbols.

19

SYMBOLS

Symbols (like schematic drawings) are stored in xschem libraries. For XSCHEM a library is just a directory placed under
the XSCHEM_LIBRARY_PATH directory, see the installation slide. A symbol is stored in a .sym file.

user:~$ cd .../share/xschem/xschem_library/
user:xschem_library$ 1s

devices

user:xschem_library$ cd devices

user:devices$ 1ls *.sym
ammeter.sym
arch_declarations.sym
architecture.sym
assign.sym
attributes.sym

bus_connect_not_shown.sym

bus_connect.sym
capa.sym
ccces.sym
ccvs.sym
connect.sym
delay_hsp.sym
delay_line.sym
delay.sym
diode.sym
flash_cell.sym
generic_pin.sym

generic.sym
gnd.sym

ind.sym

iopin.sym

ipin.sym
isource_arith.sym
isource_pwl.sym
isource.sym

k.sym

lab_pin.sym
lab_wire.sym
launcher.sym
netlist_at_end.sym
netlist_not_shown.sym
netlist.sym
nmos3.sym
nmos4.sym

user:devices$ cd ...share/doc/xschem/

user:xschem$ 1s

noconn.sym
npn.sym

opin.sym
package_not_shown.sym
package.sym
param_agauss.sym
param.sym
parax_cap.sym
pmos3.sym

pmos4.sym

pmosnat.sym

pnp.sym
port_attributes.sym
res.sym
spice_probe.sym
spice_probe_vdiff.sym
switch_hsp_pwl.sym

switch_hsp.sym
switch.sym
title.sym
tline_hsp.sym
use.sym
vces.sym
vCcr.sym
VCVS.sym
vdd.sym

verilog_delay.sym
verilog_timescale.
vsource_arith.sym

vsource_pwl.sym
vsource.sym
zener.sym

sym

20

SYMBOLS

examples pcb

To place a symbol in the schematic window press the ' Insert ' key. A file chooser pops up, go to the xschem devices
directory (. . . /share/xschem/xschem library/devices in the distribution by default) and select a symbol

(res.sym for example). The selected symbol will be instantiated as a component in the schematic at the mouse pointer
coordinates.

21

SYMBOLS

PREV UP NEXT

SYMBOLS

The best way to understand how a symbol is defined is to analyze an existing one. Load a test schematic (for example
test.sch). Let's consider the resistor symbol. Use the Insert key to place the devices/res. sym symbol.

xschem - test.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

Directory: [mntix/home/schippes/share/xschem/xschem_library/devices

pMos.sym port_attributes.sym
pmos3.sym res.sym
OWN.SYm pmosd.sym spice_probe.sym
pmoshvd.sym spice_probe_vdiff.sym
ym pmosnat.sym switch.sym

pRp.sym switch_hsp.sym

File name: |res.sym DOpen

Files of type: Symbol files (*.sym) Cancel

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = -20-10 - imnt//homesschippesiftest.sch selected: 0

Use the file selector dialog to locate res . sym.

22

SYMBOLS

xschem - test.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

SMAP: (10 GRID: [20 NETLIST MODE: |spice mouse =-110 20 - test.sch selected: 0

Now select the resistor by left-clicking on it (it will turn to grey color)

23

SYMBOLS

xschem - test.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

SMAP: (10 GRID: [20 NETLIST MODE: |spice mouse = -50 20 - test.sch selected: 1

After selecting the component (component is an instance of a symbol) descend into its symbol definition by pressing the
'i' key. XSCHEM will load the devices/res. sym file and show it in the drawing window. Before descending it
asks if you want to save the parent schematic drawing before loading the resistor symbol. Answer 'yes'.

24

SYMBOLS

xschem - res.sym

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

@#0:pinnumber J==

@name

@value

@#1:pinnumber m_@m

SMAP: (10 GRID: [20 NETLIST MODE: |spice mouse = -40 30 - res.sym selected: 0

The image above is the 'symbol definition', you can now select individual graphic elements that represent the symbol,
lines, rectangles and text. Normally a symbol contains some pins, these are just rectangles drawn on the 'pin’' layer, and
some graphics / descriptive text. Another fundamental part of symbols are properties. Properties are text strings that
define attributes of the symbol, for example:

® The name of the connection pins
® The type of the symbol (spice primitive, subcircuit, documentation)

® The format of the spice/verilog/VHDL netlist for the symbol

We will return on symbols after explaining properties.

25

XSCHEM PROPERTIES
PREV UP NEXT

XSCHEM PROPERTIES

Properties are text strings that are associated to XSCHEM objects. All graphic primitives support properties.

® Wires

e Lines

® Polygons

® Rectangles

o Circles/Arcs

® Texts

® Symbol references
¢ Global attributes

Consider for example the res . sym symbol (you may open it with the File—>Open menu item) if you click inside one
of the red pins and press the 'edit property' bindkey 'q' a dialog box shows the property string associated with the
selected pin:

xschem - res.sym

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

@#O:pinnumbeu

[preserve unchanged props Imput property:
OK | Cancel | Load

name=p dir=inout propagate to=1 pinnumber=1

@#1:pinnumber

SMAP: (10 GRID: [20 NETLIST MODE: |spice mouse = -50 20 - res.sym selected: 1

26

XSCHEM PROPERTIES

The name=p dir=inout propag=1l pinnumber=1 property string tells that the selected pin name is 'p"', this
will be the symbol positive pin name in the produced netlist. The property string also defines a dir attribute with value
inout. This tells XSCHEM that electrically this is an input/output pin. This is important when producing VHDL/verilog
netlists. The propag=1 tells XSCHEM that when we select a wire attaced to this pin (which is located at index 0 in
xschem) the highlight will propagate to the other pin (with index 1). To view the xschem index of a pin click and hold the
mouse on it, the index will be shown as n= <number> in the bottom status line:

xschem - res.sym

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

@#0:pinnumber |-

@#1:pinnumber

SNAP: |10 GRID: |20 NETLIST MODE: |spice n= lx=-25y=27T5 w=5h=5

The pinnumber=1 attribute is used when exporting to pcb software (via the tEDAX netlist) and tells to which pin
number on the resistor footprint this positive pin is bound. The second (bottom) pin property string is

name=m dir=inout propag=0 pinnumber=2 and this defines the negative pin. The text primitives also have
properties. For texts the property string may be used to specify font and the layer to use for displaying text.

27

GLOBAL PROPERTIES

File Edit Options View Properties Layers Tools Symbel Hilight Simulation Waves Simulate Netlist Help

ANALOG AUDIO AMPLIFIER
N-Channel only power stage

ANALOG AUDIO AMPLIFIER
H-Channel only power stage

hsize: |05
vsize: 0.5

Props: [|ayer=8 font="Liberation Sans"

OK Cancel

mouse = 260 -60 - dc do/mos power ampli selected: 1

GLOBAL PROPERTIES

If you click outside of any displayed graphics in XSCHEM the selection set will be cleared. Clicking the edit property
'q' key when nothing is selected will display the global property string of the schematic (.sch) or symbol window
(.sym).

There is actually one different global property string defined for any available netlisting modes plus one global property
string for symbol definition (file format 1.2), so if XSCHEM is set to produce SPICE netlists the SPICE global property
string is displayed.

So, in addition to properties associated to graphical objects and symbols, we also have properties associated to schematic
(.sch) and symbol files (.sym)

28

GLOBAL PROPERTIES

xschem - res.sym

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

@#0:pinnumber

- Global schematic property:
oK Cancel Load

type=resistor

format="@name @pinlist @value m=gm"

verileg format="tran @name | @#8 , @&l) ;°

tedax format="footprint @name @footprint

value @name @value

device @name @device-

template="name=R8 m=1 value=lk footprint=1286 device=resistor"

@#L:pinnumoer |

SMAP: (10 GRID: [20 NETLIST MODE: |spice mouse = -50 20 - res.sym selected: 0

In the above 'Symbol' global property string, the format attribute defines the format of the SPICE netlist. The SPICE
netlist element line starts with the symbol name (in this case a resistor so 'rxxxxx"), the list of pins, the resistor value and a
multiplicity factor (m).

@pinlist will resolve to the parent nets attached to the resistor nodes, in the order they appear in the symbol (in this
example; first node = 'p', second node = 'm’).

We will return on component instantiation later, but for now, considering the following picture:

29

GLOBAL PROPERTIES

The @name will expand to RO, @pinlist for the RO component will expand to POS NEG.

@value resolves to the resistor value assigned in component instantiation. The template attribute defines default
values if component instantiation does not define values for them.

If you want to add a pin to an existing symbol you may copy one of these. Select a pin, press the copy 'e' bindkey and
place a new copy of it somewhere.

30

PIN ORDERING

+

Ename
Bvalue

Input property:
0K Cancel Load

name=p dir=inout

After copying the pin you may change its properties, for example you will change its property string to something like:
name=body dir=in (just as an example).

Note that pins in symbols are nothing more than rectangles drawn with the pin layer; instead of copying an existing one
you may create it from scratch, select the pin layer from the Layers menu, point the mouse where you want to place the
pin, press the ' r' bindkey and drag the mouse to the desired pin size. There is no inherent limit or assumption on pin
sizes, you are allowed to create any rectangular/square sizes. After placing the rectangle you must create a property string
by selecting it and pressing the 'q' bindkey. An empty string is shown in the dialog. Add a valid string as explained and
you are all done.

PIN ORDERING

An important aspect for symbols is the order of the pins when producing the netlist. There are some rules in the order for
example in SPICE netlist syntax; for example a Bipolar transistor has 3 pins and should be in a specific order (collector,
base, emitter). When done placing pins on a newly created symbol you can specify the order by selecting the one that
must be the first in the netlist and hitting the ' <shift>S"' bindkey; set the number to zero; this will make the selected
pin the first one. Next, select the second pin and again hit '<shift>S"', set its number to 1 and so on. By doing so you
have defined a specific pin ordering of the symbol.

31

PRIMITIVE OBJECT PROPERTIES

+

Ename
Bvalue
m=&m

Input number
Cancel

PRIMITIVE OBJECT PROPERTIES

The following attribute may be set on lines, arcs, polygons, rectangles:

¢ dash=n, where n = integer. This specifies dashed mode drawing for the specified object.
The following attribute may be set on arcs and polygons:

e £ill=true. This specifies to fill the object with the layer predefined fill style.
The following attribute may be set on wires and lines:

® bus=true. This specifies to draw a wider line. Mostly used to display wire buses.

32

PRIMITIVE OBJECT PROPERTIES

33

COMPONENT INSTANTIATION

PREV UP NEXT

COMPONENT INSTANTIATION

In the RUN XSCHEM slide some instructions were provided as examples to place a component in the schematic. Now we
will cover the topic in more detail with emphasis on component properties. Start by opening a test schematic window (you
may delete any existing stuff in it if any).

File Edit Options View Properties Layers Tools Symbol Hilight Simulation Waves Simulate MNetlist Help

hemat iz window speciFied in wour em File.

fau may chang o any diFferent ile or n start

with an emply wi W C 3

_START_MINDOW E£mylibs

a start with an emp
AOT LITHMNOW %

Directory: /mnt/x/home/schippesfxschem _library/mylib

0 top.sch
test.sch

File name: test.sch

teet_ Tm3dd
s

— |— HEH myl i/ _top Bat Dec 18 HEZ45:28 3615

Stefan Schippers

Now start by inserting a component, consider for example devices/nmos4. sym; press the Insert key, navigate to
the devices design library and open the nmos4 . sym symbol.

34

COMPONENT INSTANTIATION

Su/B.18usd
‘{ mi

Now draw some wires on each pin of the nmos; place the mouse pointer on the component pins and use the 'w' bindkey.

Ta/B. 180/
_________+ e

we need now to put labels on wire ends: use the Insert key and locate the devices/lab_pin. sym symbol. After
the 1ab_pin symbol is placed you can move it by selecting it with the mouse and pressing the 'm' bindkey. You can
also flip ('F') and rotate while moving ('R") to adjust the orientation. After placing the first one you may copy the
others from it (' e¢' bindkey). The end result should look like this:

S8 180/
_________+ e

This is what an electrical circuit is all about: a network of wires and components. In this schematic we have 5 components
(4 labels and one mos) and 4 nets. It is not mandatory to put a wire segment between component pins; we could equally
well do this:

COMPONENT INSTANTIATION

This circuit is absolutely equivalent to the previous one: it will produce the same device connectivity netlist.
Now we need to set appropriate labels on the NMOS terminals. This is -again- accomplished with component properties.
Select the wire label on the nmos source pin and press the 'q' bindkey:

Input property:
Symbol |devices/lab_pin 0K Cancel

no change properties preserve unchanged props copy cell
name=12 sig_type=std_logic lab=xxx

Now, replace the 'xxx' default string in the dialog with a different name (example: SOURCE) After clicking OK the source
terminal will have the right label.

repeat the process for the remaining GATE, DRAIN, BODY terminals;

36

COMPONENT INSTANTIATION

The following picture shows the 1ab_pin component with its properties and the corresponding symbol definition with
its global properties (remember global properties in the xschem properties slide)

37

COMPONENT INSTANTIATION

SUURLE

Input property
Symbol devices/lab_pin 0K | Cancel Load Del
no change properties preserve unchanged props copy cell
name=12 sig type=std logic lab=S0URCE

Global schematic property:
0K Cancel Load

type=label
format="+%.alias @lab"
template="name=11 sig_type=std logic lab=xxx"

COMPONENT INSTANTIATION

when building the netlist XSCHEM will look for wires that touch the red square of the lab_pin component and name that
wires with the component 'lab’ property. for example the SPICE netlist of the circuit will be:

ml DRAIN GATE SOURCE BODY nmos w=5u 1=0.18u m=1

We need now to edit the nmos properties. Select it and press the 'q' bindkey

DRAIN

—— B0ODY

SOURCE

Input property:
Symbol |devices/mnmosd 0K Cancel

no change properties preserve unchanged props copy cell
name=ml model=nmos w=5u 1=0.18u m=1

from the edit properties dialog you see there are 5 attributes with values defined:

® The component name name=m1.

® The spice model to be used in simulation model=nmos.
® The transistor width w=5u.

® The transistor channel length 1=0.18u.

® The number of parallel transistors (multiplicity) m=1.

We have never defined a value for these properties. These are the default values defined in the template attribute in the
global nmos4 . sym property string.

39

SPECIAL COMPONENTS

Ew/@1/8m

Ename

Global schematic property:
0K Cancel Load

type=nmos
format="@name @pinlist @model w=@w 1=@L m=@m"
template="name=nl model=nmos w=5Su 1=0.18u m=1"

We may want to change the dimensions of the transistor; simply change the w and 1 attribute values.
Also the component name may be changed as long as it is unique in the current schematic window. All simulators require
that components are unique, it is not permitted to have 2 components with identical name, so XSCHEM enforces this.

‘DRAIN

_{ 20u/3u/1d

apbyY

mchanged name

‘SGURCE

If a name is set that matches an existing component xschem will rename it keeping the first letter (m in this example) and
appending a number (so you might end up in something like m23 if there are many devices).

the name attribute is unique in the schematic window, and must be placed first in the property string. The name is also
used by xschem to efficiently index it in the internal hash tables.

SPECIAL COMPONENTS

General purpose

e devices/ipin.sym
¢ devices/opin.sym

40

SPECIAL COMPONENTS

e devices/iopin.sym

These components are used to name a net or a pin of another component. They do not have any other function
other than giving an explicit name to a net.

[nput pins are normal Iy
driven From the oulside
and used in a subcircuit

Output pins are normally
driven [o the oulaide

INFUTA
OUTFUT
[NPUTE

DRIVER_ENABLE_B iy

‘H.1

Inaut pins are normally
%;] used for bidirectional dala
/8.1
DRIVER_ENABLE — "
[NOUT_BUS

e devices/lab_pin.sym

e devices/lab_wire.sym

¢ devices/launcher.sym

e devices/architecture.sym

This prints global attributes of the schematic. Attributes of this symbol should not be set. It is a readonly symbol
printing top-level schematic properties.

Spice netlist special components

e devices/code.sym
¢ devices/code_shown.sym

these symbols are used to place simulator commands or additional netlist lines as text into the schematic.
Verilog netlist special components

e devices/verilog_timescale.sym
e devices/verilog_preprocessor.sym

VHDL netlist special components

41

e devices/use.sym

e devices/package.sym

e devices/package_not_shown.sym
e devices/arch_declarations.sym
e devices/attributes.sym

e devices/port_attributes.sym

e devices/generic_pin.sym

e devices/lab_generic.sym

SPECIAL COMPONENTS

42

SYMBOL PROPERTY SYNTAX

PREV UP NEXT

SYMBOL PROPERTY SYNTAX

GENERAL RULES

For symbols a global property string (to show it press 'q' when nothing is selected and Options—>Symbol global
attrs is selected) defines at least 3 attributes:

¢ type defines the the type of symbol. Normally the type attribute describes the symbol and is ignored by
XSCHEM, but there are some special types:
¢ subcircuit: the symbol has an underlying schematic representation, when producing the netlist

.

.

.

XSCHEM has to descend into the corresponding schematic. This will be covered in the subcircuits
chapter.

primitive: the symbol has a schematic representation, you can descend into it but the netlister will not
use it. This is very useful if you want to netlist a symbol using only the format (or vhdl_format or
verilog_format depending on the netlist type) attribute or use the underlying schematic. By setting
the attribute back to subecircuit and deleting (or setting to false) the verilog_ format of
vhdl_format attribute you can quickly change the behavior. For spice netlists the format attribute is
always used also for subcircuits instantiation so always leave it there.

Any value different from subcircuit or primitive will cause xschem to not use any schematic file
even if it exists. Xschem will not allow to descend into an existing schematic.

label: the symbol is used to label a net. These type of symbols must have one and only one pin, and the
template string must define a 1ab attribute that is passed at component instantiationi to name the net it is
attached to.

probe: this denotes a probe symbol that may be backannotated with a backannotation script (example:
ngspice_backannotate.tcl).

ngprobe: This is a probe element that uses a 'pull' method to fetch simulation data and display it in
current schematic. The data displayed is thus dynamic, multiple instancs of the same symbol with
annotators will display operating point data for that particular instance without the need to update the
backannotation as is required for annotators using the 'push' annotation methid.

netlist_commands: the symbol is used to place SPICE commands into a spice netlist. It should also
have a value attribute that may contain arbitrary text that is copied verbatim into the netlist. More on
this in the netlist slide.

43

GENERAL RULES

STIFICT INSTANCE SYMBOL DEFINITION
Erame

Input property:

Symbol |devices/netlist_not_shown oK Cancel| Load | Del|

[~ no change properties [~ preserve unchanged props [copy cell Global schematic property:

name=STIMULT 1 oK Cancel Load

only_toplevel=true

value=".option PARHIER=LOCAL RUNLVL=6 post MODMOMTE=l warn maxwarns=400
.option sampling_method = SRS

.option method=gear

vvss vss O dc O

Jtemp 30

type=netlist_commands

vhdl_ignore=true

verilog_ignore=true

template="name=sl only_toplevel=false value=blabla"
format="

@value

.param freq=20k

Only symbols of type subcircuit or primitive may be descended into with the 'e' bindkey if they have a
schematic view.

format:The format attribute defines the syntax for the SPICE netlist. the @ character is a 'substitution character’,
it means that the token that follows is a parameter that will be substituted with the value passed at component
instantiation. If no value is given there a value will be picked from the attribute declared in the template string.
The @pinlist is a special token that will be substituted with the name of the wires that connect to symbol pins,
in the order they are created in the symbol. See the pin ordering section in the xschem properties slide. if the order
of pins for a NMOS symbol is for example, d,g,s,b, then @pinlist will be expanded when producing a netlist to
the list of nets that connect to the symbol drain, gate, source, body respectively. There is also a special way to
define single pins: @@d for example will be replaced by XSCHEM with the net that connects to the d pin of the
symbol. so for example @pinlist is equivalent to @@d QRg @@s R@b. However using @pinlist and
setting the correct pin ordering in the symbol pins will make netlist generation faster. This is important for very
big components with lot of pins, and @pinlist is the default when symbol is generated automatically (Symbol
—>Make symbol menu of <Shift>A key).

The format attribute may contain a @spiceprefix string immediately preceding (with no spaces) the
@name attribute.. This will be substituted with value given in instance (example: spiceprefix=X) but
ONLY if Simulation—->Use 'spiceprefix' attribute is set. This allows to create different
netlists for simulation (example: all MOS are defined as subcircuits) or LVS (no device subcircuits).

44

GENERAL RULES

—Ox
File Edit Options View Properties Layers Tools Symbol Highlight Simulation Netlist | Simulate| Waves| Help

D
@wV@IV@m

@spiceprefix@name

Global schematic property:
oK Cancel Load Del Edit Attr: | <ALL>

type=nmos
format="@spiceprefix@name @pinlist @model w=@w 1=@L @extra m=@m"
template="name=M1 model=nmos w=5u 1=0.18u m=1"

SNAP: (10 GRID: |20 NETLIST MODE: [symbol mouse = -10 80 - selected: 0 path: .x6.m4.

® template: Specifies default values for symbol parameters

Bw/81/8m

Bname

Global schematic property:
0K Cancel Load

type=nmos
format="@name @pinlist @model w=@w 1=@lL m=@gm"
template="name=ml model=nmos w=5u 1=0.18u m=1"

The order these attributes appear in the property string is not important, they can be on the same line or on different lines:

type=nmos format="@name (@pinlist @model w=Q@w 1=@1 m=@m" template="name=ml model=nmos w=5u 1=0.18u 1

45

ATTRIBUTE SUBSTITUTION

format="@name (@pinlist @model w=@w 1=@1 m=Q@m"
template="name=ml model=nmos w=5u 1=0.18u m=1"
type=nmos

As you see double quotes are used when attribute values have spaces. For this reason if double quotes are needed in an
attribute value they must be escaped with backslash \ "

since the symbol global property string is formatted as a space separated list of attribute=value items, if a value
has spaces in it it must be enclosed in double quotes, see for example the symbol template attribute:
template="name=ml model=nmos w=5u 1=0.18u m=1" or the the format attribute: format="@name
@pinlist @model w=@w 1=Q@1 m=@m". As a direct consequence a literal double quote in property strings must be
escaped (\")

ATTRIBUTE SUBSTITUTION

XSCHEM uses a method for attribute substitution that is very similar to shell variable expansion done with the $
character (for example $SHOME —--> /home/user) The only difference is that XSCHEM uses the '@ ' character. The
choice of '@' vs '$' is simply because in some simulation netlists shell variables are passed to the simulator for expansion,
so to avoid the need to escape the '$' in property strings a different and less used character was chosen.

A literal @ must be escaped to prevent it to be interpreted as the start of a token to be substituted (\@). If a non space
character (different than @) ends a token it must be escaped. Attribute substitution with values defined in instance
attributes takes place in symbol format attribute and in every text, as shown in below picture.

In recent xschem versions a % prefixed attribute (example: $var) can be used instead of a @ prefix. The only difference
is that if no matching attribute is defined in instance the $var resolves to var instead of an empty string.

@w\V/@l\V@m 5u/2u/1

— VCC
2

D D

CUEINE m

If no matching attribute is defined in instance (for example we have @W in symbol and no W=. . . in instance) the QW
string is substituted with an empty string.

OTHER PREDEFINED SYMBOL ATTRIBUTES

e vhdl_ignore
® spice_ignore

46

OTHER PREDEFINED SYMBOL ATTRIBUTES

everilog_ignore
These 3 attributes tell XSCHEM to ignore completely the symbol in the respective netlist formats.

® vhdl_stop
® spice_stop
e verilog_stop

These 3 attributes will avoid XSCHEM to descend into the schematic representation of the symbol (if there is
one) when building the respective netlist format. For example, if an analog block has a schematic (.sch) file
describing the circuit that is meaningless when doing a VHDL netlist, we can use a vhdl_stop=true attribute
to avoid descending into the schematic. Only the global property of the schematic will be netlisted. This allows to
insert some behavioral VHDL code in the global schematic property that describes the block in a way the VHDL
simulator can understand.

® spice_primitive
e vhdl primitive
everilog primitive

same as above _stop attributes, but in this case the schematic subcircuit is completely ignored, only the 'format'
string is dumped to netlist. No component/entity is generated in vhdl netlist, no module declaration in verilog, no
.subckt in spice, no schematic global attributes are exported to netlist.

ehighlight
If set to true the symbol will be highlighted when one of the nets attached to its pins are highlighted.

® net_name

If set to true the #n:net_name symbol attributes will display the net names attached to pin terminals. the n is
a pin number or name.

®*place

This attribute is only useable in net1list_commands type symbols (netlist.sym, code.sym, .. .)if
set to end it tells XSCHEM that the component instance of that symbol must be netlisted at the end, after all the
other elements. This is sometimes needed for SPICE commands that must ge given at the end of the netlist. This
will be explained more in detail in the netlisting slide.

The place=header attribute is only valid only for netlist_commands type symbols and spice netlisting mode,
it tells XSCHEM that this component must be netlisted in the very first part of a spice netlist. This is necessary
for some spice commands that need to be placed before the rest of the netlist.

® generic_type

generic_type defines the type of parameters passed to VHDL components. Consider the following MOS
symbol definition; the model attribute is declared as st ring and it will be quoted in VHDL netlists.

47

OTHER PREDEFINED SYMBOL ATTRIBUTES

emodel

Ename

Global schematic property
oK Cancel Load

type=pmos

format="@name @pinlist @model”
template="name=x1 model=1rf5305"
generic_type="model=string"

the resulting netlist is shown here, note that without the generic_type attribute the ir£5305 string would
not be quoted.

entity test2 is
end test2 ;

architecture arch_test2 of test2 is
signal d : std_logic ;

signal s : std_logic ;
signal g : std_logic ;
begin

x3 : pmos3

generic map (
model => "irf5305"
)

port map (
d =>d,
g => g,
s => s

)i

end arch_test2 ;

® extra
This property specifies that some parameters defined in the format string are to be considered as additional

pins. This allows to realize inherited connections, a kind of hidden pins with connections passed as parameters.
Example of a symbol definition for the following cmos gate:

48

OTHER PREDEFINED SYMBOL ATTRIBUTES

the symbol property list defines 2 extra pins , VCCPIN and VSSPIN that can be assigned to at component
instantiation. The extra property tells XSCHEM that these 2 parameters are connection pins and not parameters
and thus must not be declared as parameters in the .subckt line in a spice netlist:

type=subcircuit

vhdl_stop=true

format="@name (@pinlist QVCCPIN QVSSPIN @symname wn=@wn 1n=Q@ln wp=Q@wp lp=@lp m=Q@m"
template="name=x1 m=1

+ wn=30u 1ln=2.4u wp=20u lp=2.4u

+ VCCPIN=VCC VSSPIN=VSS"

extra="VCCPIN VSSPIN"

generic_type="m=integer wn=real ln=real wp=real lp=real VCCPIN=string VSSPIN=string"
verilog_stop=true

with these definitions the above schematic will be netlisted as:

** .subckt proval

x2 G_y G_a G_b G_c VCC VSS lvnand3 wn=1.8u 1n=0.18u wp=lu 1lp=0.18u m=1
**_.ends

* expanding symbol: customlogicLib/lvnand3 # of pins=4
.subckt lvnand3 y a b ¢ VCCPIN VSSPIN

wn=30u 1ln=2.4u wp=20u lp=2.4u

*.opin vy

*.ipin a

*.ipin b

*.ipin c

ml net2 a VSSPIN VSSPIN nlv w=wn l=ln geomod=0 m=1

m2 y a VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm2 0 VCCPIN dnwell area="'(wp + 57u)*(lp + 31lu)' pj='2* (wp +57u)+2* (1lp +31u)'
m3 y b VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1
dxm3 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31lu)' pj='2* (wp +57u)+2* (1lp +31lu)'
m6 y ¢ netl VSSPIN nlv w=wn 1l=1ln geomod=0 m=1
m4 y ¢ VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

0

dxmé VCCPIN dnwell area='(wp + 57u)* (lp + 31u)' pj='2*(wp +57u)+2* (lp +31u)’
m5 netl b net2 VSSPIN nlv w=wn l=1ln geomod=0 m=1
.ends

Without the extra property in the cmos gate symbol the following incorrect netlist will be produced:

49

OTHER PREDEFINED SYMBOL ATTRIBUTES

** .subckt proval

x2 G_y G_a G_b G_c VCC VSS lvnand3 wn=1.8u 1n=0.18u wp=lu 1lp=0.18u m=1
**** begin user architecture code

**** end user architecture code

** _ ends

* expanding symbol: customlogicLib/lvnand3 # of pins=4

.subckt lvnand3 y a b c

wn=30u 1n=2.4u wp=20u lp=2.4u

VCCPIN=VCC VSSPIN=VSS

*.opin vy

*.ipin a

*.ipin b

*.ipin c

ml net2 a VSSPIN VSSPIN nlv w=wn l=1n geomod=0 m=1
m2 y a VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm2 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31lu)' pj='2* (wp +57u)+2* (lp +31u)"'
m3 y b VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm3 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31lu)' pj='2* (wp +57u)+2* (lp +31u)'
m6é y ¢ netl VSSPIN nlv w=wn l=1ln geomod=0 m=1

m4 y ¢ VCCPIN VCCPIN plv w=wp l=lp geomod=0 m=1

dxm4 0 VCCPIN dnwell area='(wp + 57u)*(lp + 31lu)' pj='2* (wp +57u)+2* (lp +31u)"'
m5 netl b net2 VSSPIN nlv w=wn l=1ln geomod=0 m=1

**** begin user architecture code

**** end user architecture code

.ends

as you can see the VSSPIN and VCCPIN are listed as parameters and not as pins in the netlist.
edir

Defines the direction of a symbol pin. Allowed values are in, out, inout.

50

OTHER PREDEFINED SYMBOL ATTRIBUTES

m¥em
p:ewa/elp

Input property:
0K Cancel Load

name=a dir=in

Nn:Cwn/€1n

® propag=n

This attribute instructs xschem to do a 'propagate highlight' from the pin with this attribute to the pin n. The
number 'n' refers to the pin sequence number (do a shift-S after selecting destination pin to know this
information).

e goto=n[,m, ...]
This attribute is used in the xschem embedded digital simulation engine: propagate logic simulation to the output

pinsn, [m, .. .]. The logic function is defined via the 'functionn' global attribute. There is one 'funtionn' for
each n output pin. see 'functionn' attribute for more info.

51

OTHER PREDEFINED SYMBOL ATTRIBUTES

pin number 0

pin number 2

pin number 1

preserve unchanged props Input property:

oK Cancel Del Edit Attr: <ALL=

name=A dir=in

¢ clock=n
A clock attribute defined on input pins add some information on the pin function as follows:

¢ clock=0 This indicates an 'active low' clock signal for flip-flops

¢ clock=1 This indicates an 'active high' clock signal for flip-flops

¢ clock=2 This indicates an 'active low' reset signal for flip-flops

¢ clock=3 This indicates an 'active high' reset signal for flip-flops
e function

This attribute is set in the symbol global attributes and specifies the logic function to be applied to the associated
output pin. The format is: function<n>="...logic function. . ." where the number <n> refers to the
sequence number of the output pin (do a 'Shift-S' after selecting the pin to know its sequence number). Multiple
functions (function3="...", function4="...") can be defined in case of elements with multiple outputs.

52

OTHER PREDEFINED SYMBOL ATTRIBUTES

pin number 0

pin number 1 : e e pin number 3

pin number 2

Global schematic property:
oK Cancel Del Edit Atir: | <ALL>

type=primitive

function3="0 1 | 2 & ~"

format="@name @@Al ©@EAZ @EB1 @VGND @VNB @VPB @VPWR @FY @prefix\\o2lai_ 1"
template="name=x1 VGND=VGND VNB=VNB VPB=VPB VPWR=VPWR prefix=skyl3@ fd sc hd
extra="VGND VNB VPB VPWR prefix"

highlight=true

Commands that can appear in functions are:

¢ n: A digit indicates to put on the stack the logic value (0, 1, X) of pin with sequence number n The
sequence number of a pin my be obtained by clicking the red square of the pin and pressing Shift-s.

¢ &: Does a logical AND operation of the last 2 elements on top of the stack, the result is left on the stack
¢ |: Does a logical OR operation of the last 2 elements on top of the stack, the result is left on the stack

¢ ~: Does a logical XOR operation of the last 2 elements on top of the stack, the result is left on the stack
¢ ~: Does a logical Negation operation of the last element on top of the stack, the result is left on the stack
¢ M: preceeded by 3 element 'a’, 'b', 'm', return 'a' if 'm' == 0, 'b" if 'm'==1, else 'X'

¢ m: same as above, but don't update if 'm' not 1 or 0. Used to avoid deadlocks.

¢ z: preceeded by 2 elements, 'a', 'e', return 'a' if 'e' == 1 else Z (hi-Z)

¢ d: Duplicates top element on the stack

¢ x: Exhanges the 2 top elements on the stack

¢ r: Rotate down: bottom element of stack goes to top

¢ H: Puts a Logic '1' on the stack

¢ L: Puts a Logic '0' on the stack

¢ Z: Puts a Logic "Z' on the stack

¢ U: Puts a Logic 'U' on the stack (do not assign to node)

The remaining value on the stack is the value that is returned and assigned to the output pin.
® global
a global=true property in a 1abel type symbol will declare the corresponding net as 'global'. Global nets in

spice netlists are like global variables in a C program, these nets are accessible at any hierarchical level without
the need of passing them through pin connections.

53

OTHER PREDEFINED SYMBOL ATTRIBUTES

Global schematic property:
Ok Cancel Load

type=label

global=1

format="*.alias @lab"
template="name=11 lab=VDD"

® spice_netlist

e verilog_netlist

e vhdl_ netlist
If any of these 3 properties if set to true the symbol will be netlisted in the specified format. This is only valid if
the split file netlisting mode is active (Options —> Split netlist). This is very rarely used but is
required in mixed mode simulations, where part of the system will be handled by an analog simulator (spice) and
another part of the system by a digital Verilog / VHDL simulator.

esverilog_format

This is the Verilog equivalent of the format property for Spice primitives. This is a valid definition for a 2 input
inverted XOR gate:

verilog_format="xnor #(@risedel , @falldel) @name (@Q@Z , Q@A , @@B);"

* vhdl_format

same as above for VHDL primitives.
®* tedax_format

same as above for tEDAX netlists.
® device_model

54

PREDEFINED SYMBOL VALUES

This attribute contains a SPICE .model or .subckt specification (device_model=".model D1N4148 D
. ... ") that will be printed at end of netlist only once for the specified component (D1N4148 in the example).

® schematic

This attribute specifies an alternate schematic file to open when descending into the subcircuit:

schematic=inv_2.sch

PREDEFINED SYMBOL VALUES
® @symname
This expands to the name of the symbol
® @pinlist
This expands to the list of nets that connect to symbol pins in the order they are set in the symbol
® @@pin

This expands to the net that connect to symbol pin named pin. This substitution takes place only when producing
a netlist (Spice, Verilog, VHDL, tEDAX) so it is allowed to use this value only in format,vhdl_format,
tedax_format or verilog_format attributes (see Netlisting slide)

° @#n

This expands to the net that connect to symbol pin at position n in the XSCHEM internal storage. This
substitution takes place only when producing a netlist (Spice, Verilog, VHDL, tEDAX) so it is allowed to use this
value only in format,vhdl_format, tedax_format or verilog_ format attributes (see Netlisting
slide)

This method of accessing a net that connects to a pin is much faster than previous one since XSCHEM does not
need to loop through symbol pin names looking for a match.

Example: @#2: return net name that connects to the third pin of the symbol (position 2).

® @#n:pin_attribute

This expands to the value or property pin_attribute defined in the pin at position n in the XSCHEM
internal storage. This method of looking up properties is very fast.

Example: @#0 : pinnumber: This expands to the value of the pinnumber defined in pin object at position 0 in
the xschem internal ordering. This format is very useful for slotted devices where the actual displayed pin number
depends on the slot information defined in the instance name (example: U1:2, slot number 2 of IC U1). These
tokens may be placed as text in the symbol graphic window, not in format strings.

* Q#pin_name:pin_attribute

This expands to the value or property pin_attribute defined in the pin named pin_name This method of
looking up properties is a bit slower since xschem has to do string matching to find out the pin.

Example: @#A : pinnumber: This expands to the value of the pinnumber defined in pin A. This format is very
useful for slotted devices where the actual displayed pin number depends on the slot information defined in the
instance name (example: U1:2, slot number 2 of IC U1). These tokens may be placed as text in the symbol
graphic window, not in format strings.

55

TCL ATTRIBUTE SUBSTITUTION

¢ @#pin_name:net_name
® @#n:net_name

these expand to the net name attached to pin with name pin_name or with sequence number n.
® Asch_last_modified
this indicates the last modification time of the . sch file of the symbol.
® @sym last_modified
this indicates the last modification time of the . sym file of the symbol.
® Atime_last _modified
this indicates the last modification time of the schematic (.sch) containing the symbol instance.
® @schname
this expands to the name of the schematic (.sch) containing the symbol instance.
® @prop_ptr
this expandes to the entire property string passed to the component.
® @schprop
this expandes to the spice global property string of the schematic containing the symbol
® @schvhdlprop
this expandes to the VHDL global property string of the schematic containing the symbol
® @schverilogprop

this expandes to the Verilog global property string of the schematic containing the symbol

TCL ATTRIBUTE SUBSTITUTION

Any attribute and symbol text can be embedded in atecleval (... .) construct, the string inside the parentheses will
be passed to the tcl interpreter for evaluation. This allows to use any tcl variable/command/expression. Example:
spice_ignore="tcleval ($::ignore_symbol)"

will cause the symbol to be ignored by the spice netlister if the ignore_symbol tcl variable is existing and set to true

56

COMPONENT PROPERTY SYNTAX

PREV UP NEXT

COMPONENT PROPERTY SYNTAX

Component property strings can be set in the usual way with the 'q' on a selected component instance or by menu
Properties —--> Edit

DRAIN

LITERVERLS

BODY

nchanged_nama

SOURCE

Input property:
Symbol |devices/nmos4 0K Cancel Load

no change properties preserve unchanged props copy cell
name=mchanged_name model=nmos w=20u 1=3u m=10

The dialog box allows to change the property string as well as the symbol reference. The property string is essentially a
list of attribute=value items. As with symbol properties if a value has white space it should be double-quoted.
The following property definitions are identical:

name=mchanged_name model=nmos w=20u 1=3u m=10

name="mchanged_name" model="nmos" w="20u" 1="3u" m="10"

Given the role of the " character, if quoted values are needed escapes must be used, like in the following example where
the model name will be with quotes in netlist:

57

PREDEFINED COMPONENT ATTRIBUTES

name="mchanged_name" model="\"nmos\"" w="20u" 1="3u" m="10"

or

name="mchanged_name" model=\"nmos\" w="20u" 1="3u" m="10"

the resulting SPICE netlist will be:
mchanged_name DRAIN GATE SOURCE BODY "nmos" w=20u 1=3u m=10

There is no limit on the number of attribute=value items, each attribute should have a corresponding
@attribute in the symbol definition format, but this is not a requirement. There are a number of special attributes as
we will see later.

Important: a name=<inst_name> item is mandatory and must be placed in component property string to get a valid
netlist, as this is the partname or so-called refdes (reference designator). If <inst_name> is already used in another
component XSCHEM will auto-rename it to a unique name preserving the first letter (which ts a device type indicator for
SPICE like netlists).

PREDEFINED COMPONENT ATTRIBUTES

® name

This defines the name of the instance. Names are unique, so if for example multiple MOS components are placed
in the design one should be named m1 and the second m2 or anything else, provided the names are different.
XSCHEM enforces this, unless Options —> allow duplicated instance names is set. If a name is
given that already exist in the current schematic it will be renamed. Normally the template string defines a default
name for a given component, and expecially for SPICE compatibility, the first character must NOT be changed.
For example, the default name for a MOS transistor is m1, it can be renamed for example to mcurr_source but
not for example to dcurr_source. XSCHEM does not enforce that the first character is preserved, it's up to
the designer to keep it consistent with the component type.

® embed

When the embed=t rue is set on a component instance the corresponding symbol will be saved into the
schematic (.sch) file on the next save operation. This allows to distribute schematic files that contain the used
symbols so these will not depend on external library symbols. When this attribute is set on a component instance,
all instances in the schematic referring to the same symbol will use the embedded symbol definition. When
descending into an embedded symbol, any changes will be local, meaning that no library symbol will be affected.
The changes will be saved using the embedded tag ([. . .]) into the schematic file. Removing this attribute will
revert to external symbols after saving and reloading the schematic file.

eurl
This attribute defines a location (web page, file) that can be viewed when hitting the <shift>H key (or <Alt>
left mouse buttoni) on a selected component. This is very useful to link a datasheet to a component, for
example. The default program used to open the url is xdg—open. this can be changed in the ~/xschemrc
configuration file with the launcher_ default_program variable. url can be an http link or a local file

that has a default association known to xdg-open.

® program

58

PREDEFINED COMPONENT ATTRIBUTES

this attribute can be used to specify an application to be used to open the url link, if the default application has
to be changed or the file type is unknown. for example program=evince may be given to specify an
application for a pdf file specified with url

¢ tclcommand

this can be any tcl statement (or group of statements separated by semicolons) including all xschem-specific
commands, the statement will be executed when pressing the <shift>H key (or <Alt> left mouse
button) on the selected instance.

The tclcommand and url properties are mutually exclusive.

Input property:
Symbol |devices/launcher 0K Cancel Load | Del |

[~ no change properties [preserve unchanged props [copy cell LA

name=h3 > RERLLATORS LIB
descr="GENERATE METLIST"
tclcommand="xschem netlist" wikl BIT MIGELS

T MODELS
* NEW MODELS

:

I 3 ||||||”|

-3 - |
J/home/schippesfxschem_libraryfsimulations/poweramp. spice

.subckt poweramp
netl VsS 50
VY55 net2 SO
OUTHM OUTP 8 m=1
REFP WSS IN VSS 'gain*0,99'
VPP VS5 100u m=l
VS5 VAN 100u m=1
rll VPP netl 0.3 m=1l
ra VNN net2 0.3 m=l
rlg OUTM FBN '100k' m=1
r0 FBN netd4 '100k/gain' m=l
x1 OUTM VSSX FBN VPP VNN VSS mos_power_ampli
x0 OUTP INX FB VPP VNN VSS mos power ampli

Dismiss

examples/poweramp selected: 1

mouse = -470 -1120 -
*only_ toplevel

this attribute is valid only on net1list_commands type symbols and specifies that the symbol should be
netlisted only if it is instantiated in the top-most hierarchy. This is very usefull for spice commands. Spice
commands are placed in a special net1list component as we will see and are meaningfull only when simulating
the block, but should be skipped if the component is simulated as part of a bigger system which has its own (at
higher hierarchy level) net1istcomponent for Spice commands.

59

PREDEFINED COMPONENT ATTRIBUTES

CURRENT
HF 2 P

Input property

Symbol |devices/netlist_not_shown 0K ‘ Cance|| Load | Del|

[~ no change properties [preserve unchanged props [copy cell

name=STIMULI

only_toplevel=true

value=".option PARHIER=LOCAL RUNLVL=6 post MODMONTE=l warn maxwarn=5000
.option sampling_method = SRS

.option method=gear

.temp 30

vvss vss 0 dc 0
vvpp vpp 0 dc 50
vvnn vnn 0 de -50

a
=
m
—
)

pl IAOCL

® lock

A lock=true attribute will make the symbol not editable. the only way to make it editable again is to right
click on it to bring up the edit attributes dialog box and set to false. This is useful for title symbols.

ehighlight
If set to true the symbol will be highlighted when one of the nets attached to its pins are highlighted.
® net_name

If set to true the #n:net_name symbol attributes will display the net names attached to pin terminals. the n is
a pin number or name.

®place
The place=end attribute is only valid only for net1list_commands type symbols, and tells XSCHEM that
this component must be netlisted last. This is necessary for some spice commands that need to be placed after the
rest of the netlist.
The place=header attribute is only valid only for net1ist_commands type symbols and spice netlisting
mode, it tells XSCHEM that this component must be netlisted in the very first part of a spice netlist. This is
necessary for some spice commands that need to be placed before the rest of the netlist.

® spice_ignore

This tells XSCHEM that for SPICE netlist this component will be completely ignored.

® verilog_ignore

60

PREDEFINED COMPONENT ATTRIBUTES

This tells XSCHEM that for Verilog netlist this component will be completely ignored.

* vhdl_ignore
This tells XSCHEM that for VHDL netlist this component will be completely ignored.

® sig_type
For VHDL type netlist, this tells that the current label names a signal (or constant) of type sig_type. For
example a label can be placed with name TEST and sig_type=BIT. The default type for VHDL if this
property is missing is std_logic. The following picture shows the usage of sig_type and the resulting

VHDL netlist. This property is applicable only to 1abel type components: ipin.sym, iopin. sym,
opin.sym, lab_pin.sym, lab_wire.sym.

Input property
Symbol |devices/lab_pin oK Cancel‘ Load | Del‘

[T no change properties [preserve unchanged props [copy cell
name=11 sig_type=BIT lab=TEST

entity test2 is
end test2 ;

architecture arch_test2 of test2 is

signal TEST : BIT ;
begin
end arch_test2 ;

Dismiss

e verilog_type

This is the same as sig_type but for verilog netlisting: can be used to declare a wire or a reg or any other
datatype supported by the verilog language.

® generic_type

generic_type defines the type of parameters passed to VHDL components. Consider the following examples
of placement of generic_pin components in a VHDL design:

61

PREDEFINED COMPONENT ATTRIBUTES

Input property:
Symbol |devices/generic_pin 0K Cancel

no change properties preserve unchanged props copy cell

name=q2 generic_type=integer value="7" lab=conf

As you will see in the parameters slide, generics (they are just parameters passed to components) can be passed
also via property strings in addition to using generic_pin components.

e class

The class attribute is used to declare the class of a VHDL signal, most used classes are signal and
constant. Default if missing is signal.

¢ device_model
This attribute contains a SPICE .model or .subckt specification (device_model=".model D1N4148 D
. ... ") that will be printed at end of netlist only once for the specified component (D1N4148 in the example).
device_model attributes defined at instance level override the device_model set in the symbol if any.

® pinnumber (name)

This will override at instance level the value of attribute pinnumber of pin name of the symbol. This is mainly
used for tedax, where by back annotation a connection to a symbol must be changed.

® pinnumber (index)
This will override at instance level the value of attribute pinnumber of indexth pin of the symbol. This is

mainly used for tedax, where by back annotation a connection to a symbol must be changed. This notation is
faster since xschem does not have to find a pin by string matching.

62

TCL ATTRIBUTE SUBSTITUTION
TCL ATTRIBUTE SUBSTITUTION

Any attribute and symbol text can be embedded in atecleval (... .) construct, the string inside the parentheses will
be passed to the tcl interpreter for evaluation. This allows to use any tcl variable/command/expression. Example:
value="tcleval ([expr {[info exists ::resval] ? $::resval : {100k}}])"

this attribute will set value (example: value of a resistor) to 100k if global tcl variable resval is not set or to the value
of resval if set.

63

CREATING A CIRCUIT SCHEMATIC

PREV UP NEXT

CREATING A CIRCUIT SCHEMATIC

To create a new circuit start from an empty window, run xschem and select New Schematic in the File menu.
Suppose we want co create a NAND gate, with two inputs, A and B and one output, Z. Lets start placing the input and
output schematic pins; use the Insert key and locate the devices/ipin. sym symbol. After placing it change its lab
attribute to 'A"

Directory: /mnti/home/schippesfschem_library/devices

gnd.sym isource_pwl.sym
ind.sym k.sym

iopin.sym lab_pin.sym
ipin.sym lab_wire.sym
isource.sym launcher.sym
isource_arith. sym netlist.sym

[4

File name: |ipin.sym

Copy another instance of it and set its lab attribute to B. Next place an output pin devices/opin. sym and set its lab to
Z. The result will be as follows:

A /

B

Now we need to build the actual circuit. Since we plan to do it in CMOS technology we need nmos and pmos transistors.
Place one nmos from devices/nmos4. sym and one pmos from devices/pmos4. sym By selecting them with the
mouse, moving (m bindkey), copying (' e' bindkey) place 4 transistors in the following way (the upper ones are pmos4,
the lower ones nmos4):

64

CREATING A CIRCUIT SCHEMATIC
ETCRETE Su /BB
B E
i} 4]

|10
SusH. 180

>_
m1
1

now draw wires to connect together the transistor to form a NAND gate; in the picture i have highlighted 2 electrical
nodes by selecting one wire segment of each and pressing the 'k ' bindkey.

Su/B 1 BuA {4 SusB L 180

ma md

i [

|
SusB.18u/1
Ly

4
SusB.18u/1

i

Next we need to place the supply nodes , VCC and VSS. we decide to use global nodes. Global nodes in SPICE semantics
are like global variables in C programs, they are available everywhere, we do not need to propagate global nodes with
pins. We could equally well use regular pins , as used for the A and B inputs, I am just showing different design styles.
Use the Insert key and place both devices/vdd. sym and devices/gnd. sym Since the default names are
respectively VDD and GND use the edit property bindkey 'q' to change these to VCC and VSS.

CREATING A CIRCUIT SCHEMATIC

TR g

3
[

1
S5u/8 .18u#1

(

Bu/B . 18u/1
04

we still need to connect the body terminals of the mos transistors. One possibility is to hookup the two upper pmos
transistor terminals to VCC with wires, and the two bottom nmos terminals to VSS with wires, but just to show different
design styles i am planning to use "by name" connection with labels. So place a wire label devices/lab_pin.sym
and use 4 instances of it to name the 4 body terminals. Remember, while moving (select and press the 'm' key) you can
flip/rotate using the R/F keys.

66

CREATING A CIRCUIT SCHEMATIC

Finally we must connect the input and output port connectors, and to complete the gate schematic we decide to use W=8u
for the pmos transistors. Select both the pmos devices and press the edit proprty 'q' key; modify from 5u (default) to 8u.

67

CREATING A CIRCUIT SCHEMATIC

Input property:

Symbol |devices/pmosd oK Cancel Load

no change properties preserve unchanged props copy cell
name=m2 model=pmos w=8u 1=0.18u m=1

Now do a Save as operation, save it for example in mylib/nand2. sch.

To make the schematic nicer we also add the title component. This component is not netlisted but is useful, it reports the
modification date and the author. Place the devices/title. sym component. The NAND gate is completed! (below
picture also with grid, normally disabled in pictures to make image sizes smaller).

my 1 1b/nand? Sun Des. 1l 23:58:81 2816

Stefan Schippers

68

Automatic symbol creation

Normally a cmos gate like the one used in this example is used as a building block (among many others) for bigger
circuits, therefore we need to enclose the schematic view above in a symbol representation.

Automatic symbol creation

XSCHEM has the ability to automatically generate a symbol view given the schematic view. Just press the 'a' bindkey
in the drawing area of the nand2 gate.

¥CC

|
|
Bu

{| j Etl

do you want to make
symbol view ?

oK Cancel

E@symname

As you can see a symbolic view of the gate has been automatically created using the information in the schematic view
(specifically, the input/output pins). Now, this graphic is not really looking like a nand gate, so we may wish to edit it to
make it look better. Delete (by selecting and pressing the Delete key) all the green lines, keep the red pins, the pin
labels and the @symname and @name texts, then draw a nand shape like in the following picture. To allow you to draw
small segments you may need to reduce the snap factor (menu View—>Half snap thresholf)remember to reset
the snap factor to its default setting when done.

69

Automatic symbol creation

@symname

Ename

This completes the nand2 component. It is now ready to be placed in a schematic. Open a test schematic (for example
mylib/test . sch (remember to save the nand2.sym you have just created), press the Insert key and locate the
mylib/nand2. sym symbol. Then insert devices/lab_pin.sym components and place wires to connect some
nodes to the newly instantiated nand2 component:

nand?
INPUT_A —— S
e QUTPUT _Z
INPUT_B ——

This is now a valid circuit. Let's test it by extracting the SPICE netlist. Enable the showing of netlist window (Options
—> Show netlist win,or 'A' key). Now extract the netlist (Net1ist button on the right side of the menu bar, or
'N' key). the SPICE netlist will be shown.

** . subckt test

x1 OUTPUT_Z INPUT_A INPUT_B nand2
**** begin user architecture code
**** end user architecture code
** _ ends

* expanding symbol: mylib/nand2 # of pins=3
.subckt nand2 Z A B

*.ipin A

*.opin Z

*.ipin B

ml Z A netl VSS nmos w=5u 1=0.18u m=1
m2 Z B VCC VCC pmos w=8u 1=0.18u m=1

m3 Z A VCC VCC pmos w=8u 1=0.18u m=1

m4 netl B VSS VSS nmos w=5u 1=0.18u m=1
**** begin user architecture code

****x end user architecture code

.ends

.GLOBAL VCC

70

Automatic symbol creation

.GLOBAL VSS
.end

This is an example of a hierarchical circuit. The nand?2 is a symbol view of another lower level schematic. We may place
multiple times the nand2 symbol to create more complex circuits.

SET_BAR ——

CLEAR_BAR ——

By selecting one of the nand2 gates and pressing the 'e' key or menu Edit —> Push schematic we can 'descend'
into it and navigate through the various hierarchies. Pressing <ct r1>e returns back to the upper level.

WL
nand? e T

SET_BAR — = [f = ——__

| |
RN, — _qgﬁatﬁtﬂ ¢ Efw
|

Su @ 1
! |
CLEAR_BAR —— /

nand?

z

Ei.lfbﬁ_lEua’l
S b Lk

return
‘«ctrl>-e' key

Automatic Component Wiring

This is the corresponding netlist:

** _ subckt test

x1 Q SET_BAR QBAR nand2

x2 QBAR CLEAR_BAR Q nand2

**** begin user architecture code
**** end user architecture code
** _ ends

* expanding symbol: mylib/nand2 # of pins=3
.subckt nand2 Z A B

*.ipin A

*.opin Z

*.ipin B

ml Z A netl VSS nmos w=5u 1=0.18u m=1
m2 Z B VCC VCC pmos w=8u 1=0.18u m=1

m3 Z A VCC VCC pmos w=8u 1=0.18u m=1

m4 netl B VSS VSS nmos w=5u 1=0.18u m=1
**** begin user architecture code

****x end user architecture code

.ends

.GLOBAL VCC
.GLOBAL VSS
.end

The advantage of using hierarchy in circuits is the same as using functions in programming languages; avoid drawing
many repetitive blocks. Also the netlist file will be much smaller.

Automatic Component Wiring

When a new symbol is placed there is a function to connect its pins to auto-named nets: select the symbol, then Press the
'"H' key or the Symbol->Attach net labels to component instance menu entry.

File Edit Options View Properties Layers Tools Symbol Hilight Simulation Wawves Simulate Netlist Help

FTIN
FTS
S mos_power_amgl

FrP
R

Prefix |x2
OK | [use prefix [use wire l[abels Cancel

The use prefix will prepend the shown prefix to the wire names to be attached to the component. The default value
for the prefix is the instance name followed by an underscore.

The use wire labels will use wire labels instead of pin labels. Wire labels have the text name field offset vertically
to allow a wire to pass through without crossing the wire name. in the picture below, the first component is wired with

72

Automatic Component Wiring

use prefix selected and use wire labels not selected, the second example with use prefix not selected and
use wire labels selected. As you can see in the second example you may draw wires without overstriking the
labels.

poweramp

File Edit Options View Properties Layers Tools Symbol Hilight Simulation Waves Simulate Netlist Help

mos_power_amnpl i

MINUS
PLLS
¥35 mos_power_anpl i

73

CREATING SYMBOLS

PREV UP NEXT

CREATING SYMBOLS

creating a new symbol and schematic by cloning

A useful approach to create a new component (both symbol and schematic view) is to 'clone' it from a similar existing
component: after copying a component to a different place in the schematic, press the edit property bindkey (q key) and
set a new name for the symbol, set also the copy cell checkbox:

poweramp _lol=

File Edit Options View Properties Layers Tools Symbol Hilight Simulation Waves Simulate Netlist Help

MIATS
AL
fhh
W]
Ll

Input property:

Symbol examples oK | Cancel | Load |
[no change properties [preserve unchanged propg v copy cel

name=x2

After pressing OK a copy (both schematic and symbol views) of the previously selected component will be created. After
this clone operation modifications can be made on the newly created schematic and symbol views without affecting the
original component.

poweramp

File Edit Options View Properties Layers Tools Symbel Hilight Simulation Waves Simulate Netlist Help

MINTS

Wer_ampl T_rew

for more info on symbols see the Tutorial

74

COMPONENT PARAMETERS

PREV UP NEXT

COMPONENT PARAMETERS

What makes subcircuits really useful is the possibility to pass parameters. Parametrized subcircuits are like functions with
arguments in a programming language. One single component can be instantiated with different parameters. Recall the
NAND?2 gate we designed. It is made of four MOS transistors. A MOS transistor has at least 2 parameter, channel length
(L) and transistor width (W) that define its geometry. we have 2 NMOS transistors and 2 PMOS transistors, so we would
like to have 4 parameters passed to the NAND gate: P-channel with/length (WP/LP) and N-channel with/length
(WN/LN). So open again the mylib/nand2 . sch nand gate and replace the w=, 1= properties with: w=WN 1=LN for
the two NMOS and w=WP 1=LP for the two PMOS.

TIP: you can select two PMOS at the same time by clicking the second one with the shift key pressed, so with edit
property 'q' key you will change properties for both.

WCL

&
|

RP/LF7T) FRALF7T)

Input property:

Symbol |devices/pmosd 0K Cancel

no change properties preserve unchanged props copy cell
name=n2 model=pmos w=WP 1=LP m=1

By doing the same for the NMOS transistors we end up with a schematic with fully parametrized transistor geometry.

75

COMPONENT PARAMETERS

WP/LPA L {:‘ WF/LFSL

ma m3
o

0

0
WH/LN/ 1
5

mi

Now we have to change the mylib/nand2 . sym symbol. Save the changes in the nand2 schematic (<shift>S) and
load (Ctrl-o) the nand2 symbol. without selecting anything hit the 'q"' key to edit the symbol global property string.
make the changes as shown in the picture.

Esymname

Prame

Global schematic property:
Load

name WP=@WP LP=@LP WN=@NN LMN=@LN"
0. 18u WN=5u LN=0.1Bu"

COMPONENT PARAMETERS

The template attribute defines the default values to assign to WN, LN, WP, LP. The format string is updated to pass
parameters, the replacement character @ is used to substitute the parameters passed at component instantiation. You may
also add some descriptive text ('t ') so you will visually see the actual value for the parameters of the component:

P: eWP/eLP

—_ Brame

Now close the modified symbol saving the changes. Let's test the placement of the new modified symbol. Start a new
schematic (menu File -> New) and insert (Insert key)the NAND?2 gate. by pressing 'q' you are now able to
speciify different values for the geometric parameters:

A Tdusd . du

Input property:
Symbol |mylib/nand2 0K Cancel

no change properties preserve unchanged props copy cell
name=x1 WP=12u LP=0.4u WN=Bu LN=0.6u

let's place a second instance (select and 'e¢' copy key) of the nand gate. set for the second NAND gate different WN, LN,
WP, LP parameters. place some labels on input and outputs and connect the output of the first NAND gate to one of the
inputs of the second NAND gate. Name the pin labels as in the picture using the edit property 'q' key on selected
lab_pin instance

TIP: XSCHEM can automatically place pin labels on a component: just select it and press the Shift—-h key.

N: 3u/1.5u

NI Bu/B.bu

77

COMPONENT PARAMETERS

now save the new schematic ('s"' key, save inmylib/test2. sch) If you enable the netlist window, menu
Options—>Show netlist win and press the Net1list button in the menu bar you get the following netlist:

** _ subckt test2

x1 Z netl C nand2 WP=12u LP=0.4u WN=8u LN=0.6u
x2 netl A B nand2 WP=5u LP=1u WN=3u LN=1.5u
**** begin user architecture code

**** end user architecture code

** _ ends

* expanding symbol: mylib/nand2 # of pins=3

.subckt nand2 Z A B WP=8u LP=0.18u WN=5u LN=0.18u
*.ipin A

*.opin Z

*.ipin B

ml Z A netl VSS nmos w=WN 1=LN m=1
m2 Z B VCC VCC pmos w=WP 1=LP m=1

m3 Z A VCC VCC pmos w=WP 1=LP m=1

m4 netl B VSS VSS nmos w=WN 1=LN m=1
**** begin user architecture code
**** end user architecture code
.ends

.GLOBAL VCC

.GLOBAL VSS
.end

As you can see there are 2 components placed passing parameters to a nand2 subcircuit. There is complete freedom in
the number of parameters. Any kind parameters can be used in subcircuits as long as the simulator permits these.

78

PREV UP NEXT

EDITOR COMMANDS

EDITOR COMMANDS

Most editing commands are available in the menu, but definitely key-bindings and Mouse actions are the most effective

way to build and arrange schematics,

so you should learn at least the most important ones.

The basic principle in XSCHEM is that first you select something in the circuit then you decide what to do with the
selection. For example, if you need to change an object property you first select it (mouse click) and then you press the
edit property ('q"') key. It you need to move together multiple objects you select them (by area or using multiple mouse
clicks with the Shift key), then you press the move ('m") key.

EDITOR COMMAND CHEATSHEET

This list is available in XSCHEM in the Help menu

LeftButton

shift + LeftButton

ctrl + LeftButton

LeftButton drag

shift + LeftButton drag

Ctrl + LeftButton drag

Shift +

Ctrl + LeftButton drag

Shift + Right Button

Ctrl + Right Button

Mouse Wheel
MidButton drag
Alt + LeftButton

Alt + LeftButton drag

RightButton

XSCHEM MOUSE BINDINGS

Clear selection and select a graphic object

(line, rectangle, symbol, wire)

if clicking on blank area: clear selection

Select without clearing previous selection

if an 'url' or 'tclcommand' property is defined on
selected instance open the url or execute the
tclcommand

Select objects by area, clearing previous selection

Select objects by area, without clearing
previous selection

Select objects by area to perform a
subsequent 'stretch' move operation

Select objects by area without unselecting
to perform a subsequent 'stretch' move operation

Select all connected wires/labels/pins

Select all connected wires/labels/pins, stopping at
wire Jjunctions

Zoom in / out
Pan viewable area

Unselect selected object

Unselect objects by area

Context menu

79

EDITOR COMMAND CHEATSHEET

Shift + RightButton Select object under the mouse and if label/pin
select attached nets

Ctrl + RightButton Select object under the mouse and if label/pin
select attached nets up to net junctions

LeftButton Double click Terminate Polygon placement
Edit object attributes

XSCHEM KEY BINDINGS

- BackSpace Back to parent schematic

- Delete Delete selected objects

- Insert Insert element from library

- Escape Abort, redraw, unselect

ctrl Enter Confirm closing dialog boxes

- Down Move down

- Left Move right

- Right Move left

- Up Move up

ctrl Left Previous tab (1f tabbed interface enabled)

ctrl Right Next tab (i1f tabbed interface enabled)

- "\ Toggle fullscreen

- t Break selected wires at any wire or component pin
connection

- v Pan schematic
- v When drawing lines or wires toggle between
manhattan H-V, manhattan V-H or oblique path.

- TH#! Highlight components with duplicated name (refdes)

ctrl T Rename components with duplicated name (refdes)

- '5e View only probes

ctrl '0-9" set current layer (4 -13)
0" set selected net or label to logic value '0'
'l set selected net or label to logic value 'l'
2" set selected net or label to logic value 'X'
'3 set selected net or label to logic value 'Z'
'4r toggle selected net or label: 1->0, 0->1, X->X

- 'a' Make symbol from pin list of current schematic

ctrl 'a' Select all

shift 'AY Toggle show netlist

- 'b! Merge file

ctrl 'b! Toggle show text in symbol

alt 'b! Toggle show symbol details / only bounding boxes

- 'c! Copy selected obj.

ctrl 'c! Save to clipboard

shift 'C! Start arc placement

shift+ctrl 'C' Start circle placement

alt 'c! Toggle dim/brite background with rest of layers

shift 'D' Delete files

ctrl 'e! Back to parent schematic

- 'e! Descend to schematic

alt 'e! Edit selected schematic in a new window
"\ Toggle Full screen

shift 'F! Flip

alt £ Flip objects around their anchor points

ctrl £ Find/select by substring or regexp

- £ Full zoom

shift+ctrl 'F' Zoom full selected elements

shift 'G! Double snap factor

- 'g' Half snap factor

ctrl 'g' Set snap factor

alt 'g! Hilight selected nets and send to gaw waveform viewer

- 'h! Constrained horizontal move/copy of objects

alt 'h! create symbol pins from schematic pins

80

EDITOR COMMAND CHEATSHEET

ctrl 'h' Follow http link or execute command (url, tclcommand properties)

shift "H' Attach net labels to selected instance

- i Descend to symbol

alt i Edit selected symbol in a new window

alt+shift 'J! Create labels with 'i' prefix from highlighted nets/pins

alt ' Create labels without 'i' prefix from highlighted nets/pins

ctrl ' Create ports from highlight nets

alt+ctrl ' Print list of highlighted nets/pins with label expansion

shift 'J! create xplot plot file for ngspice in simulation directory
(just type xplot in ngspice)

- ' Print list of highlighted nets/pins

- 'k! Hilight selected nets

ctrl+shift 'K' highlight net passing through elements with 'propag' property set on pins

shift 'K! Unhilight all nets

ctrl 'k! Unhilight selected nets

alt 'k Select all nets attached to selected wire / label / pin.

- "1 Start line

ctrl ' Make schematic view from selected symbol

alt+shift ' add lab_wire.sym to schematic

alt ' add lab_pin.sym to schematic

ctrl+shift 'o! Load most recent schematic

ctrl 'o! Load schematic

- 'm' Move selected obj.

shift N Top level only netlist

- 'n' Hierarchical Netlist

ctrl 'n' New schematic

ctrl+shift 'N' New symbol

alt 'n' Empty schematic in new window

alt+shift N Empty symbol in new window

shift '0! Toggle Light / Dark colorscheme

ctrl 'o! Load schematic

alt 'p! Add symbol pin

ctrl 'p! Pan schematic view

shift 'p! Pan, other way to.

alt 'q' Edit schematic file (dangerous!)

- 'q' Edit prop

shift Q! Edit prop with vim

ctrl+shift 'Q' View prop

ctrl 'q' Exit XSCHEM

alt 'r! Rotate objects around their anchor points

shift 'R' Rotate

- 'r' Start rect

shift 'S! Change element order

ctrl+shift 'S’ Save as schematic

ctrl 's' Save schematic

alt 's' Reload current schematic from disk

ctrl+alt 's' Save—as symbol

- 't Place text

alt u' Align to current grid selected objects

shift 'U’ Redo

- 'u' Undo

- 'v! Constrained vertical move/copy of objects

ctrl 'v! Paste from clipboard

shift 'V Toggle spice/vhdl/verilog netlist

- 'w' Place wire

ctrl 'w! Place polygon. Operation ends by placing last point over first.

shift W' Place wire, snapping to closest pin or net endpoint

ctrl 'x! Cut into clipboard

- 'x! New cad session

shift 'X! Highlight discrepancies between object ports and attached nets

- 'y! Toggle stretching wires

- 'z! Zoom box

shift 'Z! Zoom in

ctrl 'z! Zoom out

81

KEYBIND CUSTOMIZATION

- e Help
- 't Join / break / collapse wires
shift vt Postscript/pdf print
ctr+shift vt Xpm/png print
alt+shift tel Svg print
=t dim colors
ctrl - Test mode: change line width
ctrl '+ Test mode: change line width
'+ brite colors
- ' Toggle change line width
- 'e! Toggle draw grid
ctrl '=" Toggle fill rectangles
- 'S Toggle pixmap saving

ctrl 'S Toggle use XCopyArea vs drawing primitives for drawing the screen
- te! Toggle flat netlist

KEYBIND CUSTOMIZATION

changes to default keybindings may be placed in the ~/ . xschem file as in the following examples:

replace Ctrl-d with Escape (so you won't kill the program :-))
set replace_key (Control-d) Escape

swap w and W keybinds; Always specify Shift for capital letters
set replace_key (Shift-W) w

set replace_key (w) Shift-w

STRETCH OPERATIONS

An important operation that deserves a special paragraph is the St retch operation. There is frequently the need to move
part of the circuit without breaking connections, for example to create more room for other circuitry or just to make it
look better. The first thing to do is to drag a selection rectangle with the mouse holding down the Ctr1 key, cutting wires
we need to stretch:

82

STRETCH OPERATIONS

] X
R Clana

After selection is done hit the move ('m') key. You will be able to move the selected part of the schematic keeping
connected the wires crossing the selection rectangle:

In our example we needed to move up part of the circuit, the end result is shown in next picture. Multiple stretch
rectangles can be set using the Shift key in addition to the Ctrl key after setting the first stretch area.

83

PLACE WIRES SNAPPING TO CLOSEST PIN OT NET ENDPOINT

PLACE WIRES SNAPPING TO CLOSEST PIN OT NET ENDPOINT

The (uppercase) 'W' bindkey allows to place a wire putting start (and end point, later) to the closest pin or wire endpoint,
this will make it easier to connect precisely without the need to zoom in all times.

CONSTRAINED MOVE

while creating wires, lines, and moving, stretching, copying objects, pressing the "h' or 'v' keys will constrain the
movement to a horizontal or vertical direction, respectively.

84

CONSTRAINED MOVE

File Edit Options View Properties Layers Tools Symbol Hilight Simulation

mouse = -60 -560 - dc_dc/poweramp selected: 30 w=-350 h=-490

=8ix

Wawves Simulate Netlist Help

STIMILL

Thu Ock 5 LE:B&:33

Constrained horizontal move: regardless of the mouse pointer Y position movement occurs on the X direction only.

85

CONSTRAINED MOVE

File Edit Options View Properties Layers Tools Symbol Hilight Simulation

TR

de_d=/poveranp
StefFan Schippers

mouse = -150 -240 - dc_dc/poweramp selected: 30 w=-440 h=-170

wes |

Waves

I il v
WK ar
J_Ii e
Y3 — = | rrmpl |
o YFFP ad e r
m: Y — 1

Simulate

MNetlist

Tru Oct

5

Help

LBiBs:33 :

Unconstrained move: objects follow the mouse pointer in X and Y direction.

86

NETLISTING
PREV UP NEXT

NETLISTING

XSCHEM has 3 predefined netlisting modes, Spice, Verilog and VHDL. Netlisting mode can be set in the Options
menu (Vhdl, Verilog Spice radio buttons) or with the <Shift>V key. Once a netlist mode is set, hitting the
Netlist button on the top-right of the menu bar or the <Shift>N key will produce the netlist file in the defined
simulation directory. The simulation directory is one important path that is specified in the xschemrc file, if no one is
defined XSCHEM will prompt for a directory. The path where netlists are produced can be changed with the
Simulation->Set netlist dir menu entry. The netlist filename is cellname . ext where cellname is the
name of the top-level schematic from which the netlist has been generated, and ext is the file extension:

® spice for spice netlist.
¢ vhdl for vhdl netlist.
¢ v for verilog netlist.

EXAMPLE

Consider the following top level schematic, part of the XSCHEM distribution (examples/poweramp . sch).

= REGLATORS LIB
bwikr BIT MOCELS
T MOPELS

= WP MODELS

: I

1.z
ey

STIAIL]

Thu Dec 22 A1 :B6:58 2916

This schematic is made of some 1eaf components and some subcircuit components:

87

EXAMPLE

¢ leaf: these componens are 'known' to the simulator, netlist of these blocks is done by specifying a 'format’
attribute in the symbol property string. Examples of leaf components in the schematic above are voltage sources,
resistors, capacitors, dependent sources. The following are examples of leaf component instantiations in a SPICE
netlist:

c3 VSS VNN 100u m=1
rll VPP netl 0.3 m=1
r9 VNN net2 0.3 m=1
rl9 OUTM FBN '100k' m=1

The format of resistor (and capacitor) SPICE netlist is defined in the format attribute of the symbol global
property:

format="@name @pinlist @value m=@m"

® subcircuit: these components are not base blocks known to the simulator, but are representation of a more
complex block. These components have in addition to the symbol a schematic representation. In the picture
example the mos_power_ampli is a subcircuit block. These type of components also have a 'format' property
that defines a subcircuit call. A subcircuit call specifies the connections of nets to the symbol pins and the symbol
name. The following two subcircuit calls are present in the SPICE netlist:

x1 OUTM VSSX FBN VPP VNN VSS mos_power_ampli
x0 OUTP INX FB VPP VNN VSS mos_power_ampli

The format of subcircuit type components is also defined in the symbol format attribute:

format="@name (@pinlist @symname"

For subcircuits, after completing the netlist of the top level the XSCHEM' netlister will recursively generate all the netlists
of subcircuit components until leaf schematics are reached that do not instantiate further subcircuits.

(end of top level netlist)
* expanding symbol: examples/mos_power_ampli # of pins=6
.subckt mos_power_ampli OUT PLUS MINUS VPP VNN VSS
*.ipin PLUS

*.ipin MINUS
*.ipin VPP

88

Other netlist formats
Other netlist formats

All the concepts explained for SPICE netlist apply for Verilog and VHDL formats. Its up to the designer to ensure that the
objects in the schematic are 'known' to the target simulator. For example a resistor is normally not used in VHDL or
Verilog designs, so unless an appropriate 'format' attribute is defined (for example a rtran device may be good for a
verilog resistor with some limitations). The format attribute for Verilog is called verilog_format and the attribute for
VHDL is vhdl_format

The following example shows two attributes in a NMOS symbol that define the format for SPICE and for Verilog and
some valid default (template) values:

type=nmos

format="@name (@pinlist @model w=@w 1=@1 m=Q@m"

verilog_format="@verilog_gate # (@del) @name (@@d , @@s , @@g);"
template="name=x1 verilog_gate=nmos del=50,50,50 model=NCH w=0.68 1=0.07 m=1"
generic_type="model=string"

89

NET PROBES
PREV UP NEXT

NET PROBES

XSCHEM has the ability to hilight a net and propagate the highlight color to all nets or instance pins attached to the net. It
has the ability to follow this net through the hierarchy. This is very useful in large designs as it makes it easy to see where
a net is driven and were the net goes (fan-out). Highlighting a net is straightforward, click a net and press the 'k ' key. If
more nets are selected all nets will be colored with different colors. <Shift>K clears all highlight nets, <Ctr1>k clears
selected nets.

Select some nets...

PP
YN

DUTR

YN

...press the 'k ' key...

90

NET PROBES

o |

WM

OUTP

...all nets are highlighted, select the white net...

91

NET PROBES

mos_pover _amp i

VNN

QOLTP

..press the <Ctr1>k key and white net is un-highlighted...

92

NET PROBES

tlEGkS a2
m=1

QTP

mos_power —ampli

if you descend into component instance x1 (mos_power_ampli) ('e' key) you will see the highlight nets propagated into
the child component.

93

NET PROBES

YBIOST

T SV

m

o
Lp=

s ‘—| Fa

65 g
L~ L]

PLIE — B = |=nINs
|—.—|Eg

PLUS
HINLE

WHH
Y55

Fri Dec 38 1B:5&::

A very useful function is the 'View only probes' mode, ('5' key) that hides everything but the highlight probes. This is
useful in very big VLSI designs to quickly locate start and end point of nets. Pressing again the '5"' key restores the
normal view.

ot | oo

94

NET PROBES

95

SIMULATION

PREV UP NEXT

SIMULATION

One of the design goals of XSCHEM is the ability to launch a simulation without additional manual file editing. For this
purpose XSCHEM stores in a schematic not only the circuit but also the simulator settings and the additional files that are
needed. For example there is a devices/netlist.symand devices/netlist_not_shown. sym symbol that
can be placed in a schematic acting as a container of text files for all the needed SPICE models and any additional
information to make the schematic ready for simulation.

MULELS

Input property

Symbal |devices/netlist_not_shown oK Cance|| Load ‘ Del|

[no change properties [preserve unchanged props [copy cell

name=MODELS

only_toplevel=true

value=" MODEL bdl39 2 npn

+I15=1e-00 BF=222.664 NF=0.85 VAF=35. 4079

+IKF=0.166126 ISE=5.03418e-09 NE=1.45313 BR=1.35467
C‘IT Ir” ||_I +MNR=1.33751 VAR=142.931 IKR=1.66126 ISC=5,02557e-09
- - +NC=3,10227 RB=26,9143 IRB=0.1 REM=0.1

+RE=0. 000472454 RC=1.04109 XTB=0.727762 ¥TI=1.04311

+EG=1.05 CJE=le-11 VJE=0.75 MIE=0.33

+TF=1e-09 XTF=1 VTF=10 ITF=0.01

+C1C=1e-11 VIC=0.75 MIC=0.33 XCIC=0.9

+FC=0.5 CJS=0 VJS=0.75 M1S=0.5

+TR=1e-07 PTF=0 KF=0 AF=1

.MODEL BD132 NPN (

+I5=2.3985E-13 Vceo=80 Icrating=1500m

+BF=244.9 NF=1.0 BR=78.11 NR=1.007 ISE=1.0471E-14
+MNE=1.2 ISC=1.9314E-11 NC=1.45 VAF=98.5 VAR=7.46
+IKF=1.1863 IKR=0.1445 RB=2.14 REM=0.001 IRB=0.031
+RE=0.0832 RC=0.01 CJE=2.92702E-10 VIE=0.67412
+MJE=0.3300 FC=0.5 C1C=4.B8831E-11 VIC=0.5258
+MJC=0.3928 XCIC=0.5287 XTB=1.1398 EG=1.2105 XTI=3.8)

MODEL BD140 PNP(IS=le-09 BF=550.842 NF=0,85 VAF=10
+IKF=0,0950125 ISE=1e-08 NE=1.54571 BR=56.177
+NR=1.5 VAR=2.11267 IKR=0,950125 ISC=le-08

The devices/netlist_not_shown symbol shown in the picture (with name MODELS) for example contains all
the spice models of the components used in the schematic, this makes the schematic self contained, no additional files are
needed to run a simulation. After generating the netlist (for example poweramp.spice) the resulting SPICE netlist can be
sent directly for simulation (for example hspice —-i poweramp.spice for the Hspice(TM) simulator).

VERILOG SIMULATION

This is a tutorial showing how to run a simulation with XSCHEM. The first important thing to note is that XSCHEM is
just a schematic editor, so we need to setup valid bindings to simulators. For this tutorial we plan to do a Verilog
simulation since there is a very good open source simulator available, called Icarus Verilog. There is also a good
waveform viewer called gtkwave that is able to show simulator results. Install these two valuable tools and setup
simulator invocation by using the Simulator configurator (Simulation—->Configure Simulators and

96

http://iverilog.icarus.com
https://sourceforge.net/projects/gtkwave

tools).

VERILOG SIMULATION

File Edit Options View Properties Layers Tools Symbol Highlight Simulation

O

Waves | Simulate Netlist | Help

BINARY

BINARY

|0
[Fg [Status

iverilog -o .verilog object -g2012 "$N" && wvp .verilog object
" Fg I Status

gtkwave dumpfile.vcd "$N.sav" 2=/dev/null
[Fg [Status

ghdl -c --ieee=synopsys -fexplicit "$N" -r "$s5" --wave="%$n.ghw"
" Fg ¥ Status

Rawtoved
verilog Icarus verilog
verilogwave |Gtkwave
vhdl Ghdl
vhdlwave |Gtkwave
Cancel Help

gtkwave "$n.ghw" "$N.sav" 2=/dev/null
[Fg [Status

Close Save Configuration

The text entry on the verilog line is the command to invoke icarus verilog simulation. $N will be expanded to the netlist
file ($netlist_dir/greycnt.v), while $n will be replaced with the circuit name without extension
($netlist_dir/greycnt). Note also the command to invoke gtkwave on the vcd file generated by theverilog
simulation. If Save Configuration button is pressed the changes are made permanent by saving in a

~/ .xschem/simrc file.

In the XSCHEM distribution there is one example design, examples/greycnt . sch.
Load this design:

user:~$ xschem

.../share/doc/xschem/examples/greycnt.sch

97

VERILOG SIMULATION

BIMNARY
ERCHI TECTURE

initinl begin
$dunpk el "dumpl [Te.ved").
kdunprara:
&=A:
and
alwaye hegln
#1HAB;
] Afb ZEBh, A. Bl

iFinishs

TIMESCALE A[A] —— —Jl"l_

“t Imeesals 1pesipe

Thu Dec 25 168:57:33 2416

This testbench has a 8 bit input vector A[7:0] and two output vectors, B[7:0] and C[7:0]. B[7:0] is a grey coded vector,
this mean that if A[7:0] is incremented as a binary number B[7:0] will increment by changing only one bit at a time. The
C[7:0] vector is the reverse transformation from grey-code to binary, so at the end if simulation goes well C[7:0] ==
A[7:0]. In this schematic there are some components, the first one is the xnor gate, the second one is the assign
element. The 'xnor' performs the logical 'Not-Xor' of its inputs, while 'assign’ just propagates the input unchanged to the
output, optionally with some delay. This is useful if we want to change the name of a net (putting two labels with different
names on the same net is not allowed, since this is normally an error, leading to a short circuit).

An Ex-Nor gate can be represented as a verilog primitive, so for the xnor gate we just need to setup a
verilog_format attribute in the global property string of the xnor . sym gate:

98

VERILOG SIMULATION

Global schematic property
oK Cancel Load

type=xnor
verilog_format="xnor #(@risedel , @falldel) @name (@@Z . @@A ., @@B);"
template="name=x1 risedel=100 falldel=200"

the 'assign' symbol is much simpler, in this property string you see the definition for SPICE (format attribute), Verilog
(verilog_ format) and VHDL (vhdl_format). This shows how a single symbol can be used for different netlist
formats.

Ename_Edel ay

Global schematic property:
0K Cancel Load

type=delay

verilog_format="assign #@delay @ed = @@s :"
vhdl _format=" @@d == @@s after @delay ;"
format="@name @pinlist 0"

template="name=vl delay=1"

While showing the top-level testbench greyent set XSCHEM in Verilog mode (menu Options—>Verilog radio
button, or <Shift>V key) and press the edit property 'q' key, you will see some verilog code:

99

VERILOG SIMULATION

BIMARY BIMARY
PRCHITECTURE

initinl begin
Sdunpk I el "dumpf [Te . ved" 12
bdunprara;
1=E;

and

always benin

#1Hl ent2
ﬁf Global schematic property:

Al 0K Cancel Load

initial begin
$dumpfile ("dumpfile . ved");

$dumpvars;
A=0;
end

always begin
#1000;
$display ("%08b %08b", A, B);
A=A + 1;
if(A==0) $finish;
end
TIMESCALE

“bimeecala 1p

Thu Dec 23 18:57:38 2816

This is the testbench behavioral code that generates stimuli for the simulation and gives instructions on where to save
simulation results. If you generate the verilog netlist with the Net 1ist button on the right side of the menu bar (or n
key) a greycnt . v file will be generated in the simulation directory ($ {HOME } /xschem_library/simulations
is the default path in the XSCHEM distribution, but can be changed with the set netlist_dir

$env (HOME) /simulations in xschemrec file):

‘timescale 1lps/lps
module greycnt (
output wire [7:0] B,
output wire [7:0] C
)

reg [7:0] A ;

xnor #(1 , 1) x2 (B[4] , A[5] , A[4]);

xnor #(1 , 1) x3 (B[5] , A[6] , A[5]);

xnor #(1 , 1) x14 (B[6] , A[7] , A[6]);
assign #1 B[7] = A[7] ;

xnor #(1 , 1) x1 (B[1l] , A[2] , A[l]);

xnor #(1 , 1) x4 (B[2] , A[3] , A[2]);

xnor #(1 , 1) x5 (B[3] , A[4] , A[3]);

xnor #(1 , 1) x6 (B[O] , A[1l] , A[O]);

xnor #(1 , 1) x7 (C[4] , C[5] , B[4]);

xnor #(1 , 1) x8 (C[5] , C[6] , BI[5]);

xnor #(1 , 1) x9 (C[6] , C[7] , B[6]);

assign #1 C[7] = BI[7] ;

xnor #(1 , 1) x10 (C[1] , C[2] , BI[1l]);
xnor #(1 , 1) x11 (C[2] , CI[3] , B[2]);
xnor #(1 , 1) x12 (C[3] , C[4] , BI3]);
xnor #(1 , 1) x13 (C[0] , C[1] , BIO]);

initial begin
Sdumpfile ("dumpfile.ved");
Sdumpvars;

100

A=0;
end

always begin
#1000;
Sdisplay ("%$08b %08b", A, B);
A=A + 1;
if (A==0) $finish;
end
endmodule

VERILOG SIMULATION

you will recognize the behavioral code right after the netlist specifying the connection of nets to the xnor and assign gates
and all the necessary verilog declarations. If you press the Simulation button the Icarus Verilog simulator will
be executed to compile (iverilog) and run (vvp) the simulation, a terminal window will show the simulation output, in this
case the input vector A[7:0] and the grey coded B[7:0] vectors are shown. You can quit the simulator log window by

pressing 'q'.

lumpfile dumpfile.wcd opened for output.

greyont

File Edit Of

. BL7:8]
ALT:@] - CI7:0]

mouse = -0 -340 - examples/greycnt selected: 0

If simulation completes with no errors waveforms can be viewed. Press the Waves button in the top-right of the menu

bar, you may add waveforms in the gtkwave window:

VERILOG SIMULATION

File Edit Search Time Markers View Help

}b i (=] \l’ |-qm | == From:[O sec :|TO:|:256 ns
Signals

Time

Al7:0]

B[7:08]

Type Signals
reg A[7:0]
wire B[7:0]

Filter: | |

Append | | Insert Replace

If the schematic contains errors that the simulator can not handle instead of the simulation log a window showing the error
messages from the simulator is shown:

102

VERILOG SIMULATION

File Edit Options fgreycnt.

¢ syntax error
: error: Invalid module instantiation .
greycnt. : error: invalid module item. BIMARY

v
greycnt.v
v
sreHITECTURE (RS T : syntax error
D o reycnt.v:34: error: Invalid module instantiation CCTl
R greycnt.v : syntax error '
ATl greycnt.v:35: error: invalid module item.
ELILE qreycnt. v : syntax error
p

I give up.

Dismiss Save As

To facilitate the debug you may wish to edit the netlist (Simulation—->Edit Netlist) to locate the error, in the
picture below i inserted deliberately a random string to trigger the failure:

greycnt -0

File Edit Options View Properties Layers Tools Symbol Hilight Simulation Wawves Simulate Metlist Help

Syntax Buffers Window Help
X Ale]l);
or #(1 B[4]

1

1
or #(1 , 1 Cl6 B[5]
xnor #(1 , 1 (C[¢ , C[7]1 , BIs]
[-
1
1
1

BI1]
B[2]
BI3]
BlO]

xnor #(1 ,
or #(1
or #(1 ,

assign #1 C[7]
)
)

aEaNalsl
— e .,
= o LR
[-

xnor #(1 , 1)

initial begin
Sdumpfile("dumpfile.vcd”
Sdumpvars;
A=0;

end

fdfdf[]

%B08b %=08b", A, B);

if(A==0) $finish;
i -- VISUAL LINE --

As you can see the error is in the behavioral code of the top level greycnt schematic, so edit the global property ('q"' key
with no component selected) and fix the error.

103

VERILOG SIMULATION

BIMARY GRAY BIMARY
BRCHI TECTURE

BLT] CL71
— AT “_.._4|—_=._
initial beqin

Fdum ent2
kd
FE? Global schematic property:

and

0K Cancel Load

always
BEEY 1nitial begin
Bl gdumpfile ("dumpfile.vcd");
?“.: $dumpvars;
W H A=G_:

d
En end

fdfdff
always begin
#1000;
$display ("%08b %08b", A, B);
A=A + 1;
1f (A==0) $finish;

104

SIMULATION

PREV UP NEXT

SIMULATION

One of the design goals of XSCHEM is the ability to launch a simulation without additional manual file editing. For this
purpose XSCHEM stores in a schematic not only the circuit but also the simulator settings and the additional files that are
needed. For example there is a devices/netlist.symand devices/netlist_not_shown. sym symbol that
can be placed in a schematic acting as a container of text files for all the needed SPICE models and any additional
information to make the schematic ready for simulation.

MULELS

Input property

Symbal |devices/netlist_not_shown oK Cance|| Load ‘ Del|

[no change properties [preserve unchanged props [copy cell

name=MODELS

only_toplevel=true

value=" MODEL bdl39 2 npn

+I15=1e-00 BF=222.664 NF=0.85 VAF=35. 4079

+IKF=0.166126 ISE=5.03418e-09 NE=1.45313 BR=1.35467
C‘IT Ir” ||_I +MNR=1.33751 VAR=142.931 IKR=1.66126 ISC=5,02557e-09
- - +NC=3,10227 RB=26,9143 IRB=0.1 REM=0.1

+RE=0. 000472454 RC=1.04109 XTB=0.727762 ¥TI=1.04311

+EG=1.05 CJE=le-11 VJE=0.75 MIE=0.33

+TF=1e-09 XTF=1 VTF=10 ITF=0.01

+C1C=1e-11 VIC=0.75 MIC=0.33 XCIC=0.9

+FC=0.5 CJS=0 VJS=0.75 M1S=0.5

+TR=1e-07 PTF=0 KF=0 AF=1

.MODEL BD132 NPN (

+I5=2.3985E-13 Vceo=80 Icrating=1500m

+BF=244.9 NF=1.0 BR=78.11 NR=1.007 ISE=1.0471E-14
+MNE=1.2 ISC=1.9314E-11 NC=1.45 VAF=98.5 VAR=7.46
+IKF=1.1863 IKR=0.1445 RB=2.14 REM=0.001 IRB=0.031
+RE=0.0832 RC=0.01 CJE=2.92702E-10 VIE=0.67412
+MJE=0.3300 FC=0.5 C1C=4.B8831E-11 VIC=0.5258
+MJC=0.3928 XCIC=0.5287 XTB=1.1398 EG=1.2105 XTI=3.8)

MODEL BD140 PNP(IS=le-09 BF=550.842 NF=0,85 VAF=10
+IKF=0,0950125 ISE=1e-08 NE=1.54571 BR=56.177
+NR=1.5 VAR=2.11267 IKR=0,950125 ISC=le-08

The devices/netlist_not_shown symbol shown in the picture (with name MODELS) for example contains all
the spice models of the components used in the schematic, this makes the schematic self contained, no additional files are
needed to run a simulation. After generating the netlist (for example poweramp.spice) the resulting SPICE netlist can be
sent directly for simulation (for example hspice —-i poweramp.spice for the Hspice(TM) simulator).

VERILOG SIMULATION

This is a tutorial showing how to run a simulation with XSCHEM. The first important thing to note is that XSCHEM is
just a schematic editor, so we need to setup valid bindings to simulators. For this tutorial we plan to do a Verilog
simulation since there is a very good open source simulator available, called Icarus Verilog. There is also a good
waveform viewer called gtkwave that is able to show simulator results. Install these two valuable tools and setup
simulator invocation by using the Simulator configurator (Simulation—->Configure Simulators and

105

http://iverilog.icarus.com
https://sourceforge.net/projects/gtkwave

tools).

VERILOG SIMULATION

File Edit Options View Properties Layers Tools Symbol Highlight Simulation

O

Waves | Simulate Netlist | Help

BINARY

BINARY

|0
[Fg [Status

iverilog -o .verilog object -g2012 "$N" && wvp .verilog object
" Fg I Status

gtkwave dumpfile.vcd "$N.sav" 2=/dev/null
[Fg [Status

ghdl -c --ieee=synopsys -fexplicit "$N" -r "$s5" --wave="%$n.ghw"
" Fg ¥ Status

Rawtoved
verilog Icarus verilog
verilogwave |Gtkwave
vhdl Ghdl
vhdlwave |Gtkwave
Cancel Help

gtkwave "$n.ghw" "$N.sav" 2=/dev/null
[Fg [Status

Close Save Configuration

The text entry on the verilog line is the command to invoke icarus verilog simulation. $N will be expanded to the netlist
file ($netlist_dir/greycnt.v), while $n will be replaced with the circuit name without extension
($netlist_dir/greycnt). Note also the command to invoke gtkwave on the vcd file generated by theverilog
simulation. If Save Configuration button is pressed the changes are made permanent by saving in a

~/ .xschem/simrc file.

In the XSCHEM distribution there is one example design, examples/greycnt . sch.
Load this design:

user:~$ xschem

.../share/doc/xschem/examples/greycnt.sch

106

VERILOG SIMULATION

BIMNARY
ERCHI TECTURE

initinl begin
$dunpk el "dumpl [Te.ved").
kdunprara:
&=A:
and
alwaye hegln
#1HAB;
] Afb ZEBh, A. Bl

iFinishs

TIMESCALE A[A] —— —Jl"l_

“t Imeesals 1pesipe

Thu Dec 25 168:57:33 2416

This testbench has a 8 bit input vector A[7:0] and two output vectors, B[7:0] and C[7:0]. B[7:0] is a grey coded vector,
this mean that if A[7:0] is incremented as a binary number B[7:0] will increment by changing only one bit at a time. The
C[7:0] vector is the reverse transformation from grey-code to binary, so at the end if simulation goes well C[7:0] ==
A[7:0]. In this schematic there are some components, the first one is the xnor gate, the second one is the assign
element. The 'xnor' performs the logical 'Not-Xor' of its inputs, while 'assign’ just propagates the input unchanged to the
output, optionally with some delay. This is useful if we want to change the name of a net (putting two labels with different
names on the same net is not allowed, since this is normally an error, leading to a short circuit).

An Ex-Nor gate can be represented as a verilog primitive, so for the xnor gate we just need to setup a
verilog_format attribute in the global property string of the xnor . sym gate:

107

VERILOG SIMULATION

Global schematic property
oK Cancel Load

type=xnor
verilog_format="xnor #(@risedel , @falldel) @name (@@Z . @@A ., @@B);"
template="name=x1 risedel=100 falldel=200"

the 'assign' symbol is much simpler, in this property string you see the definition for SPICE (format attribute), Verilog
(verilog_ format) and VHDL (vhdl_format). This shows how a single symbol can be used for different netlist
formats.

Ename_Edel ay

Global schematic property:
0K Cancel Load

type=delay

verilog_format="assign #@delay @ed = @@s :"
vhdl _format=" @@d == @@s after @delay ;"
format="@name @pinlist 0"

template="name=vl delay=1"

While showing the top-level testbench greyent set XSCHEM in Verilog mode (menu Options—>Verilog radio
button, or <Shift>V key) and press the edit property 'q' key, you will see some verilog code:

108

VERILOG SIMULATION

BIMARY BIMARY
PRCHITECTURE

initinl begin
Sdunpk I el "dumpf [Te . ved" 12
bdunprara;
1=E;

and

always benin

#1Hl ent2
ﬁf Global schematic property:

Al 0K Cancel Load

initial begin
$dumpfile ("dumpfile . ved");

$dumpvars;
A=0;
end

always begin
#1000;
$display ("%08b %08b", A, B);
A=A + 1;
if(A==0) $finish;
end
TIMESCALE

“bimeecala 1p

Thu Dec 23 18:57:38 2816

This is the testbench behavioral code that generates stimuli for the simulation and gives instructions on where to save
simulation results. If you generate the verilog netlist with the Net 1ist button on the right side of the menu bar (or n
key) a greycnt . v file will be generated in the simulation directory ($ {HOME } /xschem_library/simulations
is the default path in the XSCHEM distribution, but can be changed with the set netlist_dir

$env (HOME) /simulations in xschemrec file):

‘timescale 1lps/lps
module greycnt (
output wire [7:0] B,
output wire [7:0] C
)

reg [7:0] A ;

xnor #(1 , 1) x2 (B[4] , A[5] , A[4]);

xnor #(1 , 1) x3 (B[5] , A[6] , A[5]);

xnor #(1 , 1) x14 (B[6] , A[7] , A[6]);
assign #1 B[7] = A[7] ;

xnor #(1 , 1) x1 (B[1l] , A[2] , A[l]);

xnor #(1 , 1) x4 (B[2] , A[3] , A[2]);

xnor #(1 , 1) x5 (B[3] , A[4] , A[3]);

xnor #(1 , 1) x6 (B[O] , A[1l] , A[O]);

xnor #(1 , 1) x7 (C[4] , C[5] , B[4]);

xnor #(1 , 1) x8 (C[5] , C[6] , BI[5]);

xnor #(1 , 1) x9 (C[6] , C[7] , B[6]);

assign #1 C[7] = BI[7] ;

xnor #(1 , 1) x10 (C[1] , C[2] , BI[1l]);
xnor #(1 , 1) x11 (C[2] , CI[3] , B[2]);
xnor #(1 , 1) x12 (C[3] , C[4] , BI3]);
xnor #(1 , 1) x13 (C[0] , C[1] , BIO]);

initial begin
Sdumpfile ("dumpfile.ved");
Sdumpvars;

109

A=0;
end

always begin
#1000;
Sdisplay ("%$08b %08b", A, B);
A=A + 1;
if (A==0) $finish;
end
endmodule

VERILOG SIMULATION

you will recognize the behavioral code right after the netlist specifying the connection of nets to the xnor and assign gates
and all the necessary verilog declarations. If you press the Simulation button the Icarus Verilog simulator will
be executed to compile (iverilog) and run (vvp) the simulation, a terminal window will show the simulation output, in this
case the input vector A[7:0] and the grey coded B[7:0] vectors are shown. You can quit the simulator log window by

pressing 'q'.

lumpfile dumpfile.wcd opened for output.

greyont

File Edit Of

. BL7:8]
ALT:@] - CI7:0]

mouse = -0 -340 - examples/greycnt selected: 0

If simulation completes with no errors waveforms can be viewed. Press the Waves button in the top-right of the menu

bar, you may add waveforms in the gtkwave window:

VERILOG SIMULATION

File Edit Search Time Markers View Help

}b i (=] \l’ |-qm | == From:[O sec :|TO:|:256 ns
Signals

Time

Al7:0]

B[7:08]

Type Signals
reg A[7:0]
wire B[7:0]

Filter: | |

Append | | Insert Replace

If the schematic contains errors that the simulator can not handle instead of the simulation log a window showing the error
messages from the simulator is shown:

111

VERILOG SIMULATION

File Edit Options fgreycnt.

¢ syntax error
: error: Invalid module instantiation .
greycnt. : error: invalid module item. BIMARY

v
greycnt.v
v
sreHITECTURE (RS T : syntax error
D o reycnt.v:34: error: Invalid module instantiation CCTl
R greycnt.v : syntax error '
ATl greycnt.v:35: error: invalid module item.
ELILE qreycnt. v : syntax error
p

I give up.

Dismiss Save As

To facilitate the debug you may wish to edit the netlist (Simulation—->Edit Netlist) to locate the error, in the
picture below i inserted deliberately a random string to trigger the failure:

greycnt -0

File Edit Options View Properties Layers Tools Symbol Hilight Simulation Wawves Simulate Metlist Help

Syntax Buffers Window Help
X Ale]l);
or #(1 B[4]

1

1
or #(1 , 1 Cl6 B[5]
xnor #(1 , 1 (C[¢ , C[7]1 , BIs]
[-
1
1
1

BI1]
B[2]
BI3]
BlO]

xnor #(1 ,
or #(1
or #(1 ,

assign #1 C[7]
)
)

aEaNalsl
— e .,
= o LR
[-

xnor #(1 , 1)

initial begin
Sdumpfile("dumpfile.vcd”
Sdumpvars;
A=0;

end

fdfdf[]

%B08b %=08b", A, B);

if(A==0) $finish;
i -- VISUAL LINE --

As you can see the error is in the behavioral code of the top level greycnt schematic, so edit the global property ('q"' key
with no component selected) and fix the error.

112

VERILOG SIMULATION

BIMARY GRAY BIMARY
BRCHI TECTURE

BLT] CL71
— AT “_.._4|—_=._
initial beqin

Fdum ent2
kd
FE? Global schematic property:

and

0K Cancel Load

always
BEEY 1nitial begin
Bl gdumpfile ("dumpfile.vcd");
?“.: $dumpvars;
W H A=G_:

d
En end

fdfdff
always begin
#1000;
$display ("%08b %08b", A, B);
A=A + 1;
1f (A==0) $finish;

113

VIEWING SIMULATION DATA WITH XSCHEM
PREV UP NEXT

VIEWING SIMULATION DATA WITH XSCHEM

Usually when a spice simulation is done you want to see the results, this is usually accomplished with a waveform viewer.

There are few open source viewers, like GAW...

File Wiew Zoom Cursors Preferences Tools Help

+ x| o & [Z G =) = -
ZC0

Add Panel Del Panel Del Wave Reload All Text ZlIn Z Out
0: vioutm) : 0]-136.4m 136 .4m) -
-5

-25
-45

- i T
ot B || A, ||u|”|||||
|I'I|

o
25 i ||||| h]‘ ||| ||||1||| ||||||H|”|J

H|r|
|||||

llll' Jl||| n I.

...Or ngspice internal plotting facilities:

114

https://github.com/StefanSchippers/xschem-gaw

VIEWING SIMULATION DATA WITH XSCHEM

PostScript

5YG

There is also an interesting commercial product from Analog Flavor, called BeSpice (bspwave) that offers a free of
charge one year evaluation license for non commercial use:

115

https://www.analogflavor.com/en/bespice/

VIEWING SIMULATION DATA WITH XSCHEM

AF -0l
File Edit Page Plot Spreadsheet View Measurement Tools

B Browser & [&
U

[} poweramp.raw =
Cr op
|'J tran

wiin)
v(outm)
virafm)
virefp)
vivnn)
vivpp)
il@cllil)
il@c2[il)
il@c3Lil)
il@calil)
il@cslil)
il@calil)
il@rolil}
il@r1lil}
il@r2lil)
il@r3lil}
il@ralil)
il@rslil)

W Measurements

B Page Parameters

B Page Layout

BH B0 S kIt E B M QR

plot 1 3 |

vioutm)

mR QA WP F

W

lﬁ i ikt M'\ | I | ﬂ‘ I \" | \”ﬂ‘ |

ﬂ“w

| \ ‘ u ‘H || M H
Il

HH

5. 6.

time

S EREREREEREER M|l||f|
T

7

‘.‘ | \h U\ |\ \ﬂ | | \|\ “\ tiil |

ii ‘HU ‘| | ‘h I ‘| I H|

ms

il HH i
‘| || U |“‘ ‘J‘ ‘u \”|

| |]| |1 ‘|

Ngpice Viewer

spicewave

$terminal -e ngspice

Rawtovcd

rawtoved -v 1.5 "$n.raw" = "$n.vcd" &5 gtkwave "$n.wvcd"

"$n.sav"

Bespice wave

Cancel Help

$env(HOME) /analog_flavor_eval/bin/bspwave --

socket localhost $be

iverilog -o .verilog object -g2012 "$N" && wvp .verilog object

Reset to default Accept and Close

> -lOf=

$terminal -e 'ngspice -i "$N" -a || sh®

MNgspice Fg Status
ngspice -b -r "$n.raw" -o "$n.out" "$N"

spice MNgspice batch Fg v Status

Xyce "$N" -r "$n.raw"

Xyce batch Fg v Status
gaw "$n.raw"

Gaw viewer [~ Fg [Status

[T Fg [Status

[T Fg [Status

[T Fg [Status

Save Configuration to file

All these waveform viewers are supported by xschem and more can be added, just by giving the command line to start the
viewer to xschem in the Simulation—> Configure simulators and tools dialog:

116

Using XSCHEM's internal graph functions

For gaw and bespice xschem can automatically send nets to the viewer by clicking a net on the schematic and pressing the

Alt-Gkey bind or by menu Hilight->Send selected nets/pins to Viewer

AF
File Edit Page Plot Spreadsheet Wiew Measurement Tools

« pBrowser & [J] & plot 1 23 |
o - "

[+ poweramp.raw

fime

™

poweramp.sch | +

SCHEM =

SNAP: |10 GRID: |20 NETLIST MODE:| spice mouse = 1760 -690 - selected: 0 path: .

B B0 H 2t EBM @A WP O/Fw

-Ox

File Edit Options View Properties Layers Tools Symbol Highlight Simulation Netlist| Simulate | Waves | Help

BRERO e k0O xm= 832 70D -03dNO QAL

Using XSCHEM's internal graph functions

Xschem can now display waveforms by itself in the drawing area. in the Simulation menu there is an entry to add a graph:

Add waveform graph. When this menu is pressed a box can be placed in the schematic:

117

Using XSCHEM's internal graph functions

™ ~Ox
File Edit Options View Properties Layers Tools Symbol Highlight Simulation Netlist| Simulate | Waves | Help

BEO«AXTOx B 832 70D -0ENOQ 4" » =
poweramp.sch* | +

SNAP: |10 GRID: |20 NETLIST MODE:| spice mouse = 2120 -710 - selected: 0 path: .

The next step is loading the simulation data, This is done by menu Simulation->Load/Unload ngspice .raw
file. This command loads a .raw file produced by a ngspice/Xyce simulation. The file name is expected to be
circuit.raw where circuit. sch is the name of the schematic opened in the drawing area. The raw file is searched
for in the simulation/netlisting directory Simulation —->set netlist dir.

After placing a graph box and loading simulation data a wave can be added. If you place the mouse on the inside of the
box, close to the bottom/left/right edges and click the graph will be selected. You can also select a graph by dragging a
selection rectangle all around it. This tells xschem where new nodes to be plotted will go, in case you have multiple
graphs. Then, select a node or a net label, press 'Alt-G', the net will be added to the graph. Here after a list of commands
you can perform in a graph to modify the viewport. These commands are active when the mouse is Inside the graph (you
will notice the mouse pointer changing from an arrow to a +). if the mouse is outside the graph the usual Xschem
functions will be available to operate on schematics:

® Pressing £ with the mouse in the middle of the graph area will do a full X-axis zoom.

® Pressing £ with the mouse on the left of the Y axis will do a full Y-axis zoom.

® Pressing Left /Right or Up/Down arrow keys while the mouse is inside a graph will move the waveforms to
the left/right or zoom in/zoom out respectively.

® Pressing Left /Right or Up/Down arrow keys while the mouse is on the left of the Y-axis will move the
waveforms or zoom in/zoom out in the Y direction respectively.

¢ Pressing the 1eft mouse button while the pointer is in the center of the graph will move the waves left or right
following the pointer X movement.

® Pressing the 1left mouse button while the pointer is on the left of the Y-axis will move the waves high or low
following the pointer Y movement.

® Doing the above with the Shift key pressed will zoom in/out instead of moving.

® pressing a and/or b will show a vertical cursor. The sweep variable difference between the a and the b cursor is
shown and the values of all signals at the X position of the a cursor is shown.

® Double clicking the 1e £t mouse button with the pointer above a wave label will allow to change its color.

118

Using XSCHEM's internal graph functions

¢ Pressing the right mouse button with the pointer above a wave label will show it in bold.
® Double clicking the 1eft mouse button with the pointer in the middle of the graph will show a configuration
dialog box, where you can change many graph parameters.

¢ Pressing the right mouse button in the graph area and dragging some distance in the X direction will zoom in
the waveforms to that X range.

B8 -|Ox
File Edit Options View Properties Layers Tools Symbol Highlight Simulation Netlist| Simulate | Waves | Help

BEO e« A2XTOx B 832 70D | —0ENOQ 4.7 » b=
poweramp.sch* | +

10.3 1

SNAP: |10 GRID: |20 METLIST MODE:| spice mouse = 2100 -500 - selected: 1 w=730 h=-180

The graph configuration dialog box which is shown by 1left button double clicking inside the graph, allows to change
many graph attributes, like number of X/Y labels, minor ticks, wave colors, add waves from the list of waves found in the
raw file, select the dataset to show in case of multiple sweep simulations and more.

119

Display bus signals

graphdialog

Search: Clear| [Incr. sort [Bus [Digital MinValue: -50 Max Value: |50
Xunits m 3 Yunits|l % Xdiv.]5 Ydiv.5 Xsubdiv.1 Ysubdiv.1 Dataset0

Signal list Add Signals in graph [Unlocked X axis
x1.xm2.11

®1.xm2.10 Ez
®1.xm2.9

®x1.xm2.8
®x1.xm2.7
®x1.xm2.6
®x1.xm2.5
*x1.xm2.4

®*1.xml.11
*1.xml1.10

1

¥

= El =

I
ok | appiy | cancel [OIKDIK - - OOOO 00 - OO - B0

The text area with the colored wave names is just a text widget. You can manually edit it to add / remove waves, or you
can place the cursor somewhere in the text, select some waves from the listbox on the left, press the Add button to have
these waves added. If you place the insertion cursor in the middle of a node name in the text area, you can click the color
radio buttons on the bottom to change the color. The Search entry can be used to restrict the list of nodes displayed in
the listbox. The Search entry supports regular expression patterns. For example, ~X will match all nodes that begin with
X, xm[0-9]\ . will match all nodes containing xm followed by one digit and a dot.

Display bus signals

If you have a design where digital signals are present you might want to group some of these to form a bus and display
these bundled signals. After placing a graph box and loading the simulation data as explained above, left-double click the
graph to show the configuration dialog, check the bus and digital check boxes, use the Search text entry to restrict
the list of signals, then select all the signals you want to show as a bus and click the Add button. Also set the Min
value and the Max wvalue of the signals in the bus. This information is needed by Xschem to calculate the logic high
and logic low thresholds. Currently the logic '1' is set at 80% of the signal min-max range and the logic '0' level is set at
20% of the signal range. After pressing the Add button a bus is shown in the text area. The first field is a template
BUS_NAME that you should change to give a meaningful name to the bus. The bus name is separated from the rest of bits
by a, or ; character.

120

Display bus signals

™ -0
Search: “ldg Clear Incr. sort Bus [Digital Min Value: |0 Max Value: 1.5

Xunitsju 3 Yunits|1 5 Xdiv.5 Ydiv.|5 Xsubdiv.]l Ysubdiv.]l Dataset|0

Signal list Add Signals in graph Unlocked X axis
Idq[15] BUS NAME,1ldq[15],1dq[14],1dq[13],1dq[12],1dq[11],1dq[18],1dq[S],ldq

Idq[14]
Idq[13]
Idq[12]
Idq[11]
Idg[10]

ok | apply cancel | O IR ¢ BN o o -

You will then see your bussed signal in the graph:

If you have bussed signals in the schematic , like LDA[12:0] and your graph has the Digital and Bus checkboxes
set you can simply add the LDA bus to the graph by clicking the net in the schematic (with the configuration dialog open)
and pressing Alt-G:

121

Display bus signals

b

Search: Clear Incr. sort # Bus W Digital Min Value: |0 Max Value: |1.5

Y

Xunits|n 5 Yunits|1 3 Xdiv.5 Ydiv.5 Xsubdiv.4 Ysubdiv.1l Dataset/0
Signal list Add Signals in graph Unlocked X axis

xsa[15]idsall LDQ, ldq[15], ldq[14], ldq[13], ldg[12], ldg[11], ldg[18], ldg[9], ldq[8], L¢

xsa[15].1dgiii
xsa[15].1dgi
xsa[15].ldgib
xsa[15].1dg
xsa[15].ldcp b
xsa[14].Idsali
xsa[14].Idgiii
xsa[14].1dgii

| xsa[14].1dgib

oK Apply Cancel

B

You can add many signals to see them stacked in a very compact view:

LDQ
22F4

lden
15
ldcp
0.7053

Idsal

|dymsref

Idcp_addlat_b
1.505
ldcp_rowdec

It is possible to switch the graph to analog mode, by unchecking the Digital checkbox in the graph configuration

Expression evaluation on waves

dialog, to better see the waveforms. Switching back to Digital yields the previous view. In analog mode buses are not
shown, but are not lost. You will see them again when switching back to Digital mode.

Idsal Idymsref Idcp_addlat
0

0.591 0.6771

Many graphs can be created in a schematic, and the configuration of all graphs (viewport, list of signals, colors) is saved
together with the schematic. If you re-run a simulation just unloading/loading the data from the simulation menu will
update the waveforms.

16KEB ROM Macrocell
16 bit Data 1/0 x BKWords

¢
F
¢ ¢

I

r

Expression evaluation on waves

It is possible to enter math expressions combining simulation data, for example multiply current and voltage to get the
power. The syntax of expressions uses postfix (RPN) notation. When entering an expression use double quotes in the
graph edit attribute dialog box, so the expression will be considered as a single new wave to display. Operands are loaded
onto a stack like structure and then evaluated. The syntax is:

Expression evaluation on waves

"

"alias_name; operand operand operator
Example:

"supply power;i(vcurrvnn) vnn * i(vcurrvpp) vpp * +"
that means: i(vcurrvnn) * van + i(vcurrvpp) * vpp.

"i (vecurrvnn) le6 *"
that means: i(vcurrvnn) * 1e6.

File Edit Options View Properties [Layers Tools Symbol Highlight Simulation Netlist|SimuIate|Wave
-~ - [1: iF ¥ =

BEOCAXDOx B 854 7001 -0AN0 Q7
poweramp.sch ﬂ

NGSPICE

1t type of annotators.

Search: Clear| [Incr. sort ™ Bus [Digital MinValue:|2.4e-1 Max Value: 840

Xunits\m 3 Yunits1 3 Xdiv.|10 Ydiv.6 Xsubdiv.1 Ysubdiv.1 Dataset
Signal list Add Signals in graph [~ Unlocked X axis
"supply power;i(vcurrvnn) vnn * i(wvcurrvpp) vpp * +"

x1.xm2.11 |
x1.xm2.10
*1.xm2.9
x1.xm2.8
x1.xm2.7
x1.xm2.6
x1.xm2.5
x1.xm2.4
®1.xml1.11
x1.xm1.10 i

=1 [P
ok | apply | cancel = [EETNIER (o| o (o] o iel e Nall o o Nall o |'»

Kl

The optional alias_name is just a string to display as the wave label instead of the whole expression. The following

operators are defined:
2 argument operators:

® 4+ Addition

® — Subtraction

e * Multiplication

e / Division

e ** Exponentiation

¢ exch () Exchange top 2 operands on stack

1 argument operators:

® sin () Trig. sin function
® cos () Trig. cos function
e tan () Trig. tan function
® sqrt () Square root

® sgn () Sign

124

® abs () Absolute value

® exp () Base-e Exponentiation

® 1n () Base-e logarithm

® 10g10 () Base 10 logarithm

® avg () Moving average

e deriv () Derivative

® integ () Integration

® dup () Duplicate last element on stack

Expression evaluation on waves

125

DEVELOPER INFO

PREV UP NEXT

DEVELOPER INFO

GENERAL INFORMATION

XSCHEM uses layers for its graphics, each layer is a logical entity defining graphic attributes like color and fill style.
There are very few graphical primitive objects:

1. Lines

2. Rectangles

3. Open / close Polygons
4. Arcs / Circles

5. Text

These primitive objects can be drawn on any layer. XSCHEM number of layers can be defined at compile time, however
there are some predefiend layers (from O to 5) that have specific functions:

. Background color

. Wire color (nets)

. Selection color / grid

. Text color

. Symbol drawing color
. Pin color

. General purpose

. General purpose

. General purpose

0NN AW = O

20. General purpose
21. General purpose

Although any layer can be used for drawing it is strongly advisable to avoid the background color and the selection color
to avoid confusion. Drawing begins by painting the background (layer 0), then drawing the grid (layer 1) then drawing
wires (nets) on layer 2, then all graphical objects (lines, rectangles, polygons) starting form layer O to the last defined
layer.

SYMBOLS

There is a primitive object called symbol. Symbols are just a group of primitive graphic objects (lines, polygons,
rectangles, text) that can be shown as a single atomic entity. Once created a symbol can be placed in a schematic. The
instantiation of a symbol is called 'component'.

126

SYMBOLS

xschem - res.sym

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

@#0:pinnumber J==

@#1:pinnumber

SMAP: (10 GRID: [20 NETLIST MODE: |spice mouse = -40 30 - res.sym selected: 0

The above picture shows a resistor symbol, built drawing some lines on layer 4 (green), some pins on layer 5 (red) and
some text. Symbols once created are stored in libraries (library is just a UNIX directory known to XSCHEM) and can be
placed like just any other primitive object multiple times in a schematic window with different orientations.

127

WIRES

File Edit Options Wiew Properties Layers Tools Symbel Hilight Simulation Waves Simulate Netlist Help

ouse = 1330 -2080 - dc dc/poweramp selected: 0

WIRES

Another special primitive object in XSCHEM is 'Wire', Graphically it is drawn as a line on layer 1 (wires). Wires are
drawn only on this layer, they are treated differently by XSCHEM since they carry electrical information. Electrical
connection between components is done by drawing a connecting wire.

Since wires are used to build the circuit connectivity it is best to avoid drawing lines on layer 1 to avoid confusion, since
they would appear like wires, but ignored completely for electrical connectivity.

PROPERTIES

All XSCHEM objects (wires, lines, rectangles, polygons, text, symbol instance aka component) have a property string
attached. Any text can be present in a property string, however in most cases the property string is organized as a set of
key=value pairs separated by white space. In addition to object properties the schematic or symbol view has global
properties attached. There is one global property defined per netlisting mode (currently SPICE, VHDL, Verilog, tEDAX)
and one additional global property for symbols (containing the netlisting rules usually). See the XSCHEM properties
section of the manual for more info.

COORDINATE SYSTEM

XSCHEM coordinates are stored as double precision floating point numbers, axis orientation is the same as Xorg default

128

COORDINATE SYSTEM

coordinate orientation:

hj

When drawing objecs in XSCHEM coordinates are snapped to a multiple of 10.0 coordinate units, so all drawn objects
are easily aligned. The snap level can be changed to any value by the user to allow drawing small objects if desired. Grid
points are shown at multiples of 20.0 coordinate units, by default.

XSCHEM FILE FORMAT SPECIFICATION

XSCHEM schematics and symbols are stored in .sch and .sym files respectively. The two file formats are identical, with
the exception that symbol (.sym) files usually do not contain wires and component instantiations (although they can).

every schematic/symbol object has a corresponding record in the file. A single character at the beginning of a line,
separated by white space from subsequent fields marks the type of object:

¢ v : XSCHEM Version string

129

XSCHEM FILE FORMAT SPECIFICATION

¢ S : Global property associated to the .sch file for SPICE netlisting

o vV : Global property associated to the .sch file for VERILOG netlisting

® G : Global property associated to the .sch file for VHDL netlisting OR Global property associated to the .sym file
for netlisting (in 1,2 file format K is used, although backward compatibility is guaranteed)

¢ E : Global property associated to the .sch file for tEDAX netlisting

¢ K : Global property associated to the .sch/sym file for netlisting.

For schematic it is used if instantiated as a component (file format 1.2 and newer)

e L: Line

® B : Rectangle

¢ P : Open / Closed polygon

® A : Arc/ Circle

o T : Text

® N : Wire, used to connect together components (only in .sch files)

e C : Component instance in a schematic (only in .sch files)

e [: Start of a symbol embedding, the symbol refers to the immediately preceding component instance. This tag
must immediately follow a component instance (C). See the example here under. A component symbol is
embedded into the schematic file when saving if the embed=t rue attribute is set on one of the component
instances. Only one copy of the embedded symbol is saved into the schematic and all components referring to this
symbol will use the embedded definition. When a component has an embedded symbol definition immediately
following, a embed=t rue is added to the component property string if not already present.

C {TECHLIB/PCH} 620 -810 0 0 {name=x5 model=PCHLV w=4 1=0.09 m=1 embed=true}

[

G {type=pmos

format="@name Q@pinlist @model w=@w 1=@1 m=Q@m"

verilog_format="@verilog_gate # (@del) @name (@@d , @@s , @@g);"

template=" name=x1 verilog_gate=pmos del=50,50,50 model=PCH w=0.68 1=0.07 m=1 "
generic_type="model=string"

{}
{}
{}

N

5 20 20 20 {}

20 20 20 30 {}

5 -20 20 -20 {}

20 =30 20 -20 {}

-20 0 =10 0 {}

5 -27.5 5 27.5 {11}

5 -5 10 0 {}

55 10 0 {}

10 0 20 0 {}

8 -2.5 -15 -2.5 15 {}

17.5 27.5 22.5 32.5 {name=d dir=inout}
-22.5 =-2.5 -17.5 2.5 {name=g dir=in}
17.5 -32.5 22.5 -27.5 {name=s dir=inout}
17.5 -2.5 22.5 2.5 {name=b dir=in}

4 -6.25 0 3.75 270 360 {}

{@w/@1*@m} 7.5 -17.5 0 0 0.2 0.2 {}
{@name} 7.5 6.25 0 0 0.2 0.2 {999}
{@model} 2.5 -27.5 0 1 0.2 0.2 {layer=8}
{D} 25 17.5 0 0 0.15 0.15 {layer=13}
{NF=@nf} -5 -15 0 1 0.15 0.15 {}

e B I e B R B v e v v v v v o o Y e e e e e e e e £ B O N
G010 O B D DD DD

¢] : End of an embedded symbol.

130

VERSION STRING

the object tag in column 1 is followed by space separated fields that completely define the corresponding object.

VERSION STRING

Example:
v {xschem version=2.9.7 file_version=1l.2}

Two attributes are defined, the xschem version and the file format version. Current file format version is 1.2. This string is
guaranteed to be the first one in XSCHEM .sch and .sym files. A comment can be added (by manually editing the xschem
schematic or symbol file) as shown below:

{xschem version=3.1.0 file_version=1.2
Copyright 2022 Stefan Frederik Schippers

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

e N I]

GLOBAL SCHEMATIC/SYMBOL PROPERTIES

Example:

G {type=regulator

format="x@name @pinlist r@symname"
verilog_format="assign @#2 = Q#0 ;"
tedax format="footprint (@name @footprint
device @name @symname"
template="name=Ul footprint=T0220"}

Global properties define a property string bound to the parent schematic/symbol file, there is one global property record
per netlisting mode, currently SPICE, VHDL, Verilog, tEDAX.

In addition (only in file_format 1.2 and newer) for schematics and symbols there is a global attribute ('K') that defines
how to netlist the schematic/symbol if placed as a symbol into another parent schematic (should be set in the same way as
the 'G' global attribute for symbols in pre-1.2 file format). Normally only 'G' ('K'in 1.2 file format) type property strings
are used for symbols and define attributes telling netlisters what to do with the symbol, while global property strings in
schematic files corresponding to the active netlisting mode of XSCHEM are copied verbatim to the netlist.

the object tag (S, V, G, E, K) is followed by the property string enclosed in curly braces ({ . . . }). This allows strings to
contain any white space and newlines. Curly braces if present in the string are automatically escaped with the '\' character
by XSCHEM when saving data.

Example of the 4 property string records for a schematic file:

G {}

V {assign #1500 LDOUT = LDIN +1;

}

E {}

s {}

in this case only the verilog-related global property has some definition. This is Verilog code that is copied into the output

131

GLOBAL SCHEMATIC/SYMBOL PROPERTIES

netlist.

Attribute strings for all Xschem objects are enclosed in curly braces. This allows attributes to span multiple lines. This
component instance:

C {capa.sym} 890 -160 0 0 {name=C4 m=1 value=10u device="tantalium capacitor"}
and this one:

C {capa.sym} 890 -160 0 0 {name=C4

m=1 value=10u

device="tantalium capacitor"

}

are perfectly equivalent.

TEXT OBJECT

Example: T {3 of 4 NANDS of a 741s00} 500 -580 0 0 0.4 0.4 {font=Monospace layer=4}
This line defines a text object, the first field after the type tag is the displayed text, followed by X and Y
coordinates,rotation, mirror, horizontal and vertical text size and finally a property string defining some text attributes.

¢ The displayed text is enclosed in curly braces ({ . . . }) to allow white space. Literal curly braces must be escaped
if present in the saved string. XSCHEM will automatically add the escapes where needed on save.

e X ad Y coordinates are saved and retrieved as double precision floating point numbers.

e Rotation and mirror are integers (range [0:3], [0:1] respectively) that define the orientation of text objects. Using
rotation and mirror text can be aligned to any corner of its bounding box, so there are 4 different alignments for
vertical text and 4 different alignments for horizontal text. Below picture shows how text is displayed with respect

to its anchor point.

=3

Rotation=1

—iﬁotation

_|ﬁ0tati0n=0 Rotation=
Flip=0 Flip=1

Rotation=2 Rotation=2
Flip=0 + _|Elip=1

=1
-+
-3

Rotation
Flip=0
Rotation

e text X and Y sizes are stored as floating point numbers.
¢ Finally a property string is stored with the same syntax as the displayed text field. Currently the following

attributes are predefined for text objects:

¢ font Name of font to be used (ex: font=Arial)
¢ layer Number of layer to use for drawing (as in Xschem Layers menu)

132

TEXT OBJECT

¢ hcenter If set to true horizontal center text

¢ vcenter If set to true vertical center text

¢ weight If set to bold use bold style

¢ slant If setto italic or oblique use that style for text

WIRE OBJECT

Example: N 890 -130 890 -110 {lab=ANALOG_GND}

The net 'N' tag is followed by the end point coordinates x1,y1 - x2,y2. (stored and read as double precision numbers) and
a property string, used in this case to name the net. In most cases you don't need to specify attributes for nets (one
exception is the bus attribute) as the 1ab attribute is set by xschem when creating a netlist or more generally when
building the connectivity. This means that almost always nets in a xschem schematic are set as in following example:

N 890 -130 890 -110 {}

Xschem schematic files store only geometrical data and attributes of the graphic primitives, the connectivity and the
logical network is obtained by xschem.

LINE OBJECT

Example: L. 4 =50 20 50 20 {This is a line on layer 4}
The line 'L' tag is followed by an integer specifying the graphic layer followed by the x1,y1 - x2,y2 coordinates of the line
and a property string.

RECTANGLE OBJECT

Example:B 5 -62.5 -2.5 -57.5 2.5 {name=IN dir=in pinnumber=1}
The 'Box' 'B' tag is followed by an integer specifying the graphic layer followed by the x1,y1 - x2,y2 coordinates of the
rectangle and a final property string. This example defines a symbol pin.

OPEN / CLOSED POLYGON OBJECT

Example:P 3 5 2450 -210 2460 -170 2500 -170 2510 -210 2450 -210 {}

the Polygon 'P' tag is followed by an integer specifying the layer number, followed by the number of points (integer), the
X,y coordinates of the polygon points and the property string (empty in this example). If the last point is coincident to the
first point a closed polygon is drawn. A 'fill=true' arribute may be given to fill a closed polygon, in this case a polygon
line looks like:

P 3 5 2450 -210 2460 -170 2500 -170 2510 -210 2450 -210 {fill=true}

ARC OBJECT

Example: A 3 450 -210 120 45 225 {}

The Arc 'A' tag is followed by an integer specifying the layer number, followed by the arc X, y center coordinates, the arc
radius, the start angle (measured counterclockwise from the three o'clock direction), the arc sweep angle (measured
counterclockwise from the start angle) and the property string (empty in this example). Angles are measured in degrees.

133

ARC OBJECT

COMPONENT INSTANCE

Example: C {capa.sym} 890 -160 0 0 {name=C4 m=1 value=10u device="tantalium
capacitor"}

Format: C {<symbol reference>} <X coord> <Y coord> <rotation> <flip> {<attributes>}
The component instance tag C is followed by a string specifying 1ibrary/symbol or only symbol (see This tutorial
about symbol references) followed by the X,y coordinates, rotation (integer range [0:3]), mirror (integer range [0:1]), and
a property string defining various attributes including the mandatory name=. . . attribute.

Orientation and mirror meanings are as follows:

134

COMPONENT INSTANCE

[yo] —

rotation=0 rotation=0
flip=0 flip=1

rotation
rotation

rotation=2 rotation=2
flip=0 flip=1

1
K]

rotation
rotation

EXAMPLE OF A COMPLETE SYMBOL FILE (7805.sym)

G {type=regulator

format="x@name @pinlist r@symname"
verilog_format="assign Q@#2 = @#0 ;"
tedax_format="footprint @name @footprint
device @name @symname"

template="name=Ul1 footprint=T0220"}

v {}

{}

{}

S

-60 0 -50 0 {}

50 0 60 0 {}

-50 =20 50 -20 {}

50 -20 50 20 {}

-50 20 50 20 {}

-50 =20 -50 20 {}

0 20 0 30 {}

-62.5 -2.5 =-57.5 2.5 {name=IN dir=in pinnumber=1}
-2.5 27.5 2.5 32.5 {name=GND dir=inout pinnumber=2}
5 57.5 -2.5 62.5 2.5 {name=0UT dir=out pinnumber=3}
{@name} -17.5 =15 0 0 0.2 0.2 {}

{@symname} -17.5 0 0 0 0.2 0.2 {}

{@#0:pinnumber} -47.5 -2.5 0 0 0.12 0.12 {}
{@#1:pinnumber} -2.5 12.5 0 0 0.12 0.12 {}
{@#2:pinnumber} 47.5 -2.5 0 1 0.12 0.12 {}

HHHH 3 W©OWwHe BB e e HE®n
(€IS, TN NS NE NO NE

135

EXAMPLE OF A COMPLETE SYMBOL FILE (7805.sym)

@name

@#0:pinnumker pinnumber

name
@#1:pinnumber

EXAMPLE OF A COMPLETE SCHEMATIC FILE (pcb_test1.sch)

{}

{}

{}

{}

20 270 =550 860 -290 {}

{3 of 4 NANDS of a 741s00} 500 -580 0 0 0.4 0.4 {}
{EXPERIMENTAL schematic for generating a tEDAx netlist
) set netlist mode to 'tEDAx' (Options menu —-> tEDAx netlist)
) press 'Netlist' button on the right

) resulting netlist is in pcb_testl.tdx } 240 -730 0 0 0.5 0.5 {}
230 -330 300 -330 {1lab=INPUT_B}

230 =370 300 -370 {lab=INPUT_A}

680 —-420 750 -420 {lab=B}

680 —-460 750 -460 {lab=A}

400 —-350 440 -350 {lab=B}

850 —-440 890 -440 {lab=OUTPUT_Y}

230 —-440 300 -440 {lab=INPUT_F}

230 -480 300 -480 {lab=INPUT_E}

400 —-460 440 -460 {lab=A}

550 =190 670 -190 {lab=VCCFILT}

590 -130 590 -110 {lab=ANALOG_GND}

790 -190 940 -190 {lab=VCC5}

890 —-130 890 -110 {lab=ANALOG_GND}

730 =110 890 -110 {lab=ANALOG_GND}

Zzz2z22z22z22222z22wddradao0H0<®

136

EXAMPLE OF A COMPLETE SCHEMATIC FILE (pcb_test1.sch)

730 =160 730 -110 {lab=ANALOG_GND}

590 -110 730 -110 {1lab=ANALOG_GND}

440 -460 680 —-460 {lab=A}

500 —-420 680 —-420 {lab=B}

500 —-420 500 -350 {lab=B}

440 -350 500 -350 {lab=B}

{title.sym} 160 -30 0 O {name=12 author="Stefan"}

{741s00.sym} 340 -350 0 0 {name=Ul:2 risedel=100 falldel=200}
{741s00.sym} 790 —-440 0 0 {name=Ul:1 risedel=100 falldel=200}
{lab_pin.sym} 890 -440 0 1 {name=p0 lab=OUTPUT_Y}

{capa.sym} 590 -160 0 0 {name=CO0 m=1 value=100u device="electrolitic capacitor"}
{741s00.sym} 340 -460 0 0 {name=Ul:4 risedel=100 falldel=200 power=VCC5
url="http://www.engrcs.com/components/74LS00.pdf".sym}

{LM7805.pdf"}

{lab_pin.sym} 490 -190 0 0 {name=p20 lab=VCCl2}

{lab_pin.sym} 940 -190 0 1 {name=p22 lab=VCC5}

{lab_pin.sym} 590 -110 0 0 {name=p23 lab=ANALOG_GND}

{capa.sym} 890 -160 0 O {name=C4 m=1 value=10u device="tantalium capacitor"}
{res.sym} 520 -190 1 0 {name=R0O0 m=1 value=4.7 device="carbon resistor"}
{lab_wire.sym} 620 -460 0 0 {name=13 lab=A}

{lab_wire.sym} 620 -420 0 0 {name=10 lab=B}

{lab_wire.sym} 650 -190 0 0 {name=11 lab=VCCFILT}

0 {name=CONN1l lab=INPUT_A verilog_type=reg}
0 {name=CONN2 lab=INPUT_B verilog_type=reg}
0 { name=CONN3 1lab=OUTPUT_Y }

0 {name=CONN6 lab=INPUT_E verilog_type=reg}
0

0

0

O z2zz2 222

{connector.sym} 230 -370
{connector.sym} 230 -330
{connector.sym} 240 -190
{connector.sym} 230 -480
{connector.sym} 230 -440 {name=CONN8 lab=INPUT_F verilog_type=reg}

{ name=CONN9 lab=VCC1l2 }

{connector.sym} 240 -130 { name=CONN14 1lab=ANALOG_GND verilog_type=reg}
{connector.sym} 240 -100 0 0 { name=CONN15 lab=GND verilog_type=reg}

{code.sym} 1030 -280 0 0 {name=TESTBENCH_CODE only_toplevel=false value="initial begin
Sdumpfile (\\"dumpfile.vcd\\");

$Sdumpvars;

INPUT_E=0;

INPUT_F=0;

INPUT_A=0;

INPUT_B=0;

ANALOG_GND=0;

#10000;

INPUT_A=1;

INPUT_B=1;

#10000;

INPUT_E=1;

INPUT_F=1;

#10000;

INPUT_F=0;

#10000;

INPUT_B=0;

#10000;

Sfinish;

end

{connector.sym} 240 -160

O OO O O oo

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

assign VCCl2=1;

"}

C {verilog_timescale.sym} 1050 -100 0 O {name=sl timestep="1lns" precision="1lns" }

137

INPUT_E

INPUT_F

INFUT_A

INPUT_E

OUTPUT ¥

EXAMPLE OF A COMPLETE SCHEMATIC FILE (pcb_test1.sch)

EXPERIMENTA nematic for generating a tEDAX netlist

1) set netlist mod TEDAX (Options menu -> tEDAx netlist)
2) press 'Netlist’ button on the right

3) resulting netlist is in pcb_testl.tdx

3 of 4 NANDS of a 74500

TESTBEENCH_CODE

138

XSCHEM REMOTE INTERFACE SPECIFICATION

PREV UP NEXT

XSCHEM REMOTE INTERFACE SPECIFICATION

GENERAL INFORMATIONS

XSCHEM embeds a tcl shell, when running xschem the terminal will present a tcl prompt allowing to send / get
commands through it. Most user actions done in the drawing window can be done by sending tcl commands through the
tcl shell. A tcp socket can be activated to allow sending remote commands to xschem, for this to work you must the
xschem_listen_port tcl variable in xschemrc, specifying an unused port number. Xschem will listen to this port
number for commands and send back results, as if commands were given directly from the tcl console.

XSCHEM implements a TCL xschem command that accepts additional arguments. This command implements all the
XSCHEM remote interface. Of course all Tck-Tk commands are available, for example, if this command is sent to
XSCHEM: 'wm withdraw .'the xschem main window will be withdrawn by the window manager, while 'wm state
. normal' will show again the window.

This command: '‘puts $XSCHEM LIBRARY PATH' will print the content of the XSCHEM LIBRARY PATH tcl
variable containing the search path.

139

TUTORIAL: INSTALL XSCHEM
UpP

TUTORIAL: INSTALL XSCHEM

This short tutorial will illustrate all the steps needed to install XSCHEM on a linux system, getting the files from the SVN
repository.

1. Remove all previous xschem related data from old installs, i assume here previous stuff was in /usr/local, if
not change the root prefix accordingly:

schippes@mazinga:~$ sudo rm -rf /usr/local/share/xschem/ /usr/local/share/doc/xschem/
schippes@mazinga:~$ rm —-f ~/xschemrc ~/.xschem/xschemrc

2. Checkout xschem from the git repository into a build directory (I use xschem_git here):

git clone https://github.com/StefanSchippers/xschem.git xschem_git

3. Configure xschem. In this tutorial we want xschem to be installed in /usr/local/bin, xschem data installed
in /usr/local/share/xschem, xschem documentation and example circuits installed in
/usr/local/share/doc/xschem, xschem system-wide component symbols installed in
/usr/local/share/xschem/xschem_library and xschem user configuration stored in user's home
directory under ~/ . xschem:

schippes@mazinga:~/xschem_git$./configure --prefix=/usr/local --user-conf-dir=~/.xschem \
—-user—-lib-path=~/share/xschem/xschem_library \
—--sys-lib-path=/usr/local/share/xschem/xschem_library

4. If all required libraries, header files and tools that are needed to build xschem are present on the system, the
configuration will end with this message (details may vary depending on the host system):

——— Generating build and config files
config.h: ok
Makefile.conf: ok
src/Makefile: ok

Configuration summary

Compilation:
CC: gcc
debug: no

profiling: no

Paths:

prefix: /usr/local

user—-conf-dir: ~/.xschem

user—lib-path: ~/share/xschem/xschem_library

140

TUTORIAL: INSTALL XSCHEM

sys—lib-path: /usr/local/share/xschem/xschem_library

Libs & features:

tcl: -1ltcl8.6

tk: -1ltcl8.6 -1tk8.6
cairo: yes

xrender: yes

xcb: yes

Configuration complete, ready to compile.

schippes@mazinga:~/xschem_git$

5. Build xschem by running 'make'

schippes@mazinga:~/xschem_git$ make

6. If compilation of source files completed with no errors xschem will be ready for installation:

schippes@mazinga:~/xschem_git$ sudo make install

Note that since we are installing in /usr/local we need root rights (sudo) for doing the installation.

7. Test xschem by launching 'xschem' from the terminal:

schippes@mazinga:~/xschem_git$ cd
schippes@mazinga:~$ xschem

141

TUTORIAL: INSTALL XSCHEM

—Ox

File Edit Options View Properties Layers Tools Symbol Highlight Simulation Waves Simulate Metlist | Help local/share/t

re/man/mani

he

if /ust/local/bin is not in your PATH variable use the full xschem path:

schippes@mazinga:~$ /usr/local/bin/xschem

8. Close xschem (menu File - Exit)

9. Copy the xschemrec file in the trunk/src directory to the ~/ . xschem directory. If ~/ . xschem does not
exist create it with mkdir ~/.xschem

schippes@mazinga:~$ cp build/trunk/src/xschemrc ~/.xschem

The ~/ . xschem/xschemrc is the user xschem configuration file. You may change it later to change xschem
defaults or add / remove / change component and schematic directories. For first tests it is recommended to leave
xschemrc as it is.

10. Run xschem again to try some schematic load tests:

142

schippes@mazinga:~$ xschem

11. Select menu File — Open and navigate to /usr/local/share/doc/xschem/examples:

xschem - untitled.sch

File Edit Options View Properties Layers Tools Symbel Highlight Simulation

Directory: fusrflocal/share/doc/xschem/examples

0_examples_top.sch Im317.sch
cmos_example.sch Im324.sch
diode_l.sch Im337.sch

dlatch.sch LM5134A.5ch
flop.sch loading.sch
greycnt.sch mos_power_ampli.sch

TUTORIAL: INSTALL XSCHEM

Waves Simulate Netlist

nand2.sch
osc.sch
poweramp.sch
pump.sch
real_capa.sch
sr_flop.sch

File name:

Files of type: Schematic files (*.sch)

SNAP: |10 GRID: |20 mouse = -90 -100 - untitled.sch selected: O

12. Select 0_examples_top. sch and press 'OK":

Qpen

Cancel

143

TUTORIAL: INSTALL XSCHEM

xschem - 0_examples_top.sch

File Edit Options View Properties Layers Toocls Symbel Highlight Simulation Simulate MNetlist | Help

SMAP: |10 GRID: |20 mouse = -20 -830 - fusrflocalishare/doc/xschem/examples/0_examples_top.sch selected: 0

13. This schematic contains a set of sub-schematics. Select one of them by clicking it with the left mouse button
(test_Im324 in this example) and press the Alt—e key combination: another xschem window will be opened with
the schematic view of the selected symbol:

144

TUTORIAL: INSTALL XSCHEM

—Ox
File Edit Options View Properties Layers Teools Symbol Highlight Simulaticn Simulate Netlist | Help

-0
File Edit Options View Properties Layers Tocls Symbel Highlight Simulation Waves Simulate Metlist | Hel

STIMULI
e done T

em-rep

$ cd bui

do c

14. Click on the Im324 symbol, it can now be edited using the Alt-i key combination:

145

TUTORIAL: INSTALL XSCHEM

O
File Edit Options View Properties Layers Tools Symbel Highlight Simulation Wawves Simulate Netlist | Help

LM324 OPAMP EXAMPLE

SC H E M Stefan Schippers Sun Dec 30 23:44:50 2014
fusrflocal/sharefdoc/xschem/examples/test_Im324.sch

GRID: (20 1 [share; xamplesftest Im324.sch s ed: =460 h=2T70

File Edit Options View Properties Layers Tools Symbol Highlight Simulation Waves Simulate

VCC

@EinlEE

SMNAFP: (10 GRID: (20 mouse = 100 -130 - jusrilocal/share/do chem/examples/im324.sym selected: 0

15. Now close all xschem windows and restart a new xschem instance from terminal:

schippes@mazinga:~$ xschem

TUTORIAL: INSTALL XSCHEM

16. We want to create a simple circuit in this empty schematic window: press the Insert key (this is used to place
components) in the file selector navigate to /usr/local/share/xschem/xschem_library and select

res.s .
xschem - untitled.sch*

File Edit Options View Properties | Layers Toels Symbel Highlight Simulation Waves Simulate Netlist

SMAP: |10 GRID: |20 mouse = -160 50 - untitled.sch selected: 0

17. Lets add another component: press Insert key again and navigate to
/usr/local/share/doc/xschem/examples and select lm324 . sym:

147

TUTORIAL: INSTALL XSCHEM

xschem - untitled.sch*

File Edit Options View Properties |Layers Tools Symbel Highlight Simulation Waves Simulate MNetlist | Help

PLUS

VCC

Im324.sym

MINUS VS5

SMAP: |10 GRID: |20 mouse = -160 10 - untitled.sch selected: 0

18. Select (click on it) the Im324 symbol and move it by pressing the m key:

148

TUTORIAL: INSTALL XSCHEM

xschem - untitled.sch*

File Edit Options View Properties |Layers Tools Symbol Highlight Simulation Waves Simulate MNetlist | Help

SMAP: |10 GRID: |20 mouse = 160 130 - untitled.sch selected: 1 w=120 h=100

19. Place the Im324 component where you want in the schematic by placing the mouse and clicking the left button:

149

TUTORIAL: INSTALL XSCHEM

xschem - untitled.sch*

File Edit Options View Properties Layers Tocls Symbel Highlight Simulation Waves Simulate Netlist

20. The Im324.sym component has a schematic (. sch) representation, while the resistor is a primitive, it has only a
symbol view (. sym). you can see the schematic of the Im324 by selecting it and pressing Alt—e:

150

TUTORIAL: INSTALL XSCHEM

File Edit ew Properties Symbol Highlight Simulation Waves Simulate

xl
PLUS yco

Im324.sym

MINUS, - V33

xschem - Im324.sch H=F

File Edit Optiens View Properties Layers Tocls Symbel Highlight Simulation Waves Simulate Netlist | Help

S C H E M Stefan Schippers Sun Dec 30 23:44:49 2018
fusrf/localfshare/doc/xschemiexamples/im324.sch

SMAP: |10 GRID: |20 mouse = -30 -660 - fusrflecal/sharefdoc/xschemfexamples/im324.sch selected: 0

21. Close the Im324.sch window and view the symbol view of the resistor by selecting it and pressing Alt—i:

e tutorial, if all the steps were successful there is a good probability that xschem is correctly installed on your system.

O
File Edit Optiens View Properties Layers Tools Symbel Highlight Simulation Waves Simulate MNetlist | Help

PLUS e

Im324.sym

MiNUS - YES

®schem - res.sym

File Edit Options View Properties Layers Tocls Symbel Highlight Simulation Waves Simulate Netlist | Help

SMAP: |10 GRID: 20 mouse = 90 -30 - res.sym selected: 0

This concludes the tutorial, if all the steps were successful there is a good
probability that xschem is correctly installed on your system.

TUTORIAL: RUN A SIMULATION WITH XSCHEM
UpP

TUTORIAL: RUN A SIMULATION WITH XSCHEM

here some instructions to create a schematic and run a ngspice transient sim in XSCHEM:

. Build and install xschem from svn head.

. Create some empty directory (in my examples i use ~/Xx)

.cd ~/x

. ~/bin/xschem rlc.sch (use the actual xschem install path). xschem will warn you that the rlc.sch file does not exist.
No problem.

. Press Insert key

. Navigate in the file selector to .../share/xschem/xschem_library/devices

. Select 'capa.sym' and press 'Open'’

. Select the capacitor, press 'm' and place it somewhere

. Press 'Insert’ again and place 'res.sym' and then again 'ind.sym'

. Again, press 'Insert' and place 'vsource_arith.sym'

. By selecting (left btn click) and moving ('m') place the components like in this picture:

R e OSSR

— O O 00 3 O\ W\

—

xschem - ric.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = -30 -450 - /mntix/home/schippesix/ric.sch selected: 0

12. Press the right mouse button on the capacitor and set its 'value=" attribute to SOnF:

153

TUTORIAL: RUN A SIMULATION WITH XSCHEM

—1Ox
File Edit Options View Properties Layers Toels Symbel Highlight Simulation Waves Simulate Netlist | Help

Input property:
Symbel capa.sym OK Cancel

no change properties preserve unchanged props copy cell

name=CB m=1 value=58nF footprint=1286 device="ceramic capacitor”

SHAP: |10 GRID: |20 NETLIST MODE: [spice mouse = -70-210 - /mnt/x/home/schippes/x/ric.sch selected: 1

13. Do the same for the inductor (10mH) and the resistor (1k)
14. Set the voltage source VOL to: "'3*cos(time*time*time*1el1)" (include quotes, single and double):

154

TUTORIAL: RUN A SIMULATION WITH XSCHEM

xschem - ric.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

Imput property:
Symbol vsource_arith.sym 0K Cancel Load Del

ne change properties preserve unchanged props copy cell
name=El VOL=""'3*cos(time*time*time*lell)""

mouse = -50-260 - /mntix/home/schippesix/ric.sch selected: 1

SNAP: |10 GRID: |20 NETLIST MODE: |spice

15. Pressing the 'w' key and moving the mouse you draw wires, wire the components as shown (press 'w', move the
mouse and click, this draws a wire segment):

155

TUTORIAL: RUN A SIMULATION WITH XSCHEM

xschem - ric.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = -50 -420 - /mntfx/home/schippesix/ric.sch selected: 0

16. Press 'Insert key and place one instance of 'lab_pin', then use the right mouse button to change its 'lab' attribute to
A:

156

TUTORIAL: RUN A SIMULATION WITH XSCHEM

xschem - ric.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

Input property:
Symbol lab_pin.sym 0K Cancel | Load | Del |

[~ mo change properties [preserve unchanged props [copy cell
name=1l2 sig type=std logic lab=A

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = -30 -260 - /mntix/home/schippesix/ric.sch selected: 1

17. Move the label as shown, (you can use 'Shift+F' to flip and 'Shift+R' to rotate), then using 'c' copy this pin label
and edit attributes to create the B and C labels, place all of these as shown:

157

TUTORIAL: RUN A SIMULATION WITH XSCHEM

xschem - ric.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = -0 -150 - imnt/x/homefschippesix/ric.sch selected: 0
18. Select the 'C' label and copy it as shown here, set its lab attribute to O (this will be the OV (gnd node))

158

TUTORIAL: RUN A SIMULATION WITH XSCHEM

xschem - ric.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = 190 -170 - /mntfix/homefschippesix/ric.sch selected: 0

19. Press 'Insert key, place the 'code.sym' symbol, set name and value attributes as follows:

159

TUTORIAL: RUN A SIMULATION WITH XSCHEM

xschem - ric.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien Waves Simulate Netlist | Help

Input property:

Symbol code.sym oK Cancel | Load | Del |

[~ no change properties [preserve unchanged props [copy cell
name=5TIMULI

only toplevel=false

value="

.tran 18n 20886u uic

.save all

SMAP: |10 GRID: |20 NETLIST MODE: |spice mouse = 250 -300 - /mntA/homefschippesix/ric.sch selected: 1

20. Cosmetics: add 'title.sym' move the circuit (by selecting it dragging the mouse and pressing 'm’, if needed). Note

that you can do a 'stretch move'operation if you need move components keeping the wires attached; refer to the
xschem manual here

160

http://repo.hu/projects/xschem/xschem_man/commands.html

TUTORIAL: RUN A SIMULATION WITH XSCHEM

xschem - ric.sch

File Edit Options View Properties Layers Toocls Symbol Highlight Simulatien

Waves Simulate Netlist | Help

=

SMAP: (10 GRID: [20 NETLIST MODE: |spice mouse = 50 -590 - ric.sch selected: 0

21. The circuit is ready for simulation: press 'netlist' the 'rlc.spice' will be generated in current dir.
22. If ngspice is installed on the system press 'Simulate":
23. In the simulator window type 'plotab c":

161

24,

TUTORIAL: RUN A SIMULATION WITH XSCHEM

-Ox
Help

Waves Simulate Netlist

File Edit Options View Properties Layers Tocls Symbol Highlight Simulation

-0

2

0 and THOM =

T M0
A

If you set 'Simulation -> Configure simulators and tools -> Ngspice Batch' and press 'Simulate' again the sim will
be run in batch mode, a 'rlc.raw' file will be generated and a 'rlc.out' file will contain the simulator textual output.

162

TUTORIAL: CREATE AN XSCHEM SYMBOL

up

TUTORIAL: CREATE AN XSCHEM SYMBOL

In this tutorial we will build a 4011 CMOS quad 2-input NAND symbol. This IC has 4 nand gates (3 pins each, total
4*3=12 pins + VDD, VSS power pins) This device comes in a dual in line 14 pin package.

163

TUTORIAL: CREATE AN XSCHEM SYMBOL

92C5-24763

CD4011B
FUNCTIONAL DIAGRAM

164

TUTORIAL: CREATE AN XSCHEM SYMBOL

as filename:

-0
File Edit Optio View Properties | Layers Symbol Highlight Simula 5 Simulate Netlist | Help

SHAP: |10 GRID: (20 NETLIST MODE: |spice mouse =-110 10 - /mnt/</homelschippes/x/4011-1.sym selected: 0

schippes@mazinga: % ¥schem 4811-1.s5ym
load_symbol(): can not open file: /mnt/x/homesschippes/x/4011-1.5ym
[/mnt/x~/x] []

2. use layer 4 (the default) to draw the following shapes, use 1 to draw lines and use Shift—c to draw arcs, use
Ctrl-sShift-c to draw circles. Arcs and circles are drawn by specifying start - end point and a 3rd way point.
You will need to change the grid snap to 'S’ for drawing the smallest objects using the g key. Be sure to restore
the grid snap to the default value with Shift—g as soon as you are done. Also ensure that the gate terminals are
on grid with the default '10' snap setting. Use the m key after selecting objects to move them around.

TUTORIAL: CREATE AN XSCHEM SYMBOL

4
File Edit Options View Properties Layers Toocls Symbol Highlight Simulaticn Waves Simulate MNetlist | Help

SNAP: |10 GRID: |20 NETLIST MODE: [spice mouse = -90 -70 - /mntix/homefschippes/x/4011-1.sym selected: O

Do NOT forget to reset the grid setting to the default (10) value as soon as you finished drawing small objects,
otherwise the rest of the objects will be all off grid making the symbol unusable

. Create pins, select layer 5 from the Layers menu. Set grid snap to 2.5 to allow drawing small rectangles
centered on gate terminals. Start from the 'A' input of the nand gate (we assume A to be the left-top input), then
the 'B' input (the lower left input terminal), then the 'Z' output (the right terminal). If you click and hold the mouse
selecting the rectangles the 'w' and 'h' dimensions are shown. They should be equal to 5. remember to reset the
grid to default 10 when done.

Update: a more advanced command is now available to place a symbol pin: Alt-p

166

TUTORIAL: CREATE AN XSCHEM SYMBOL

xschem - 4011-1.sym*

File Edit Options View Prc:-perties-Tc-c-ls Symbol Highlight Simulation Waves Simulate Netlist | Help

sNAP: [ZISII GRID: 20 NETLIST MODE: [spice

4. Now when no object is selected press q to edit the symbol global attributes. Type the following text:

mouse = -85 37.5 - Imntfx/homefschippes/x/4011-1.sym selected: 1

type=nand

tedax_format="footprint @name @footprint

device @name @device"

template="name=Ul device=CD4011B footprint=\"dip(14)\" numslots=4 power=VCC ground=GND"
extra="power ground"

extra_pinnumber="14 7"

Instead of the g key the attribute dialog box can also be displayed by pressing the right mouse button

these attributes specify the gate type, the format for tedax netlist, the template attribute specifies default values
for attributes and defines pin connection for VDD and VSS that are associated to package pins 14 and 7. The
device attribute specifies the component name to be used in the tEDAX netlist (this is usually the name of the
IC as shown in the datasheet). The extra and extra_pinnumber attributes specify extra pin connections that
are implicit, not drawn on the symbol. This is one of the possible styles to handle power connections on slotted
devices.

167

TUTORIAL: CREATE AN XSCHEM SYMBOL

xschem - 4011-1.sym*

File Edit Opticns View Pererties-TDt:-ls Symbol Highlight Simulation

[~ Global schematic property:
oK Cancel Load

type=nand

tedax format="footprint @name @footprint

device @name @device”

template="name=U1 device=CD408118 footprint=\"dip(14)\" numslots=4 power=V(C ground=GND"
extra="power ground”

extra pinnumber="14 7°

sNAP: [ZISII GRID: 20 NETLIST MODE: [spice mouse =-37.5 10 - /mntix/home/schippesis/4011-1sym selected: 0

5. Press the t to place some text; set text v and h size to 0.2 and write @name; this will be replaced with the

instance name (aka refdes) when using the symbol in a schematic. Place a similar string with text @symname and
place it under the @name string.

168

TUTORIAL: CREATE AN XSCHEM SYMBOL

xschem - 4011-1.sym*
File Edit Opticns View Pererties-TDt:-ls Symbol Highlight Simulation

hsize: |0.2
wsize: (0.2
props:

oK Cancel Load Del

sNAP: ISR GRID:[20 NETLISTMODE:|spice mouse =-72.5 -20 - /mnt/x/home/schippes/x/4011-Lsym selected: 1

6. select the red pins (click the mouse close to the interior side of the rectangle corners) and press q, set attribute
name=A dir=in pinnumber=1:5:8:12 for the upper left pin, name=B dir=in
pinnumber=2:6:9:13 for the lower left pin, name=Z dir=out pinnumber=3:4:10:11 for the right
output pin. As you can see pin numbers 7 and 14 are missing from the list of pins; they used for VSS and VDD
power supplies, which are implicit (no explicit pins). Since we are creating a slotted device (an IC containing 4
identical nand gates) the pinnumber attribute for each pin specifies the pin number for each slot, so the
following: name=A dir=in pinnumber=1:5:8:12 specifies that pin A of the nand gate is connected to
package pin 1 for nand slot 1, to package pin 5 for nand slot 2 and so on.i The dir attribute specifies the
direction of the pin; XSCHEM supports in, out and inout types. These attributes are used mainly for digital
simulators (Verilog and VHDL), but specifying pin direction is good practice anyway.

169

TUTORIAL: CREATE AN XSCHEM SYMBOL

xschem - 4011-1.sym*

File Edit Opticns View Prc:-perties-Tc-c-ls Symbol Highlight Simulation Waves | Simulate | Netlist | Help

@name
@symname

[preserve unchanged props Input property:

OK Cancel Load

name=B dir=in pinnumber=2:6:9:13

sNAP: [ZISII GRID: 20 NETLIST MODE: [spice mouse = -80 15 - /mnt/x/heme/schippes/x/4011-1.sym selected: 1

Instead of the q key the attribute dialog box can also be displayed by placing the mouse pointer over the pin
object and pressing the right mouse button

7. We want now to place some text near the gate pins to display the pin number: again, use the t key and place the
following text, with hsize and vsize set to 0.2:

170

TUTORIAL: CREATE AN XSCHEM SYMBOL

xschem - 4011-1.sym*
File Edit Opticns View Pererties-TDt:-ls Symbol Highlight Simulation

@#0:pinnurber

@symname @#2:pinnumber

@#1:pinnyrmber

@] : pinnumber

hsize: |0.2
vsize: |0.2

props:

oK Cancel Load Del
sNAP: [ZISII GRID: 20 NETLIST MODE: [spice mouse = -112.5 115 - /mnt/x/home/schippes/x/4011-1.sym selected: 1

The complicated syntax of these text labels has the following meaning:
¢ The Q@ is the variable expansion (macro) identifier, as usual.
¢ The #0 specifies pin with index O, this is the first pin we have created, the upper left nand input. The
index of a pin can be viewed by selecting the pin and pressing Shift-s.
¢ The pinnumber specifies the attribute we want to be substituted with the actual value when placing the
gate in a schematic as we will see shortly.

8. There is another syntax that can be used to display pin numbers, instead of specifying the pin index in XSCHEM
list (that reflects the creation order) you can reference pins by their name; The only reason to use the previous
syntax with pin index numbers is efficiency when dealing with extremely big symbols (SoC or similar high pin
count chips).

171

TUTORIAL: CREATE AN XSCHEM SYMBOL

@#A:pinnumber
@name

@synname @#Z:pinnumber
@#B:pinnurhber

9. The symbol is now complete; save it and close XSCHEM. Now open again xschem with an empty schematic, for
example xschem test.sch. Press the Insert key and place the 4011-1 symbol:

1:5:8:12
Ul

4011-1.sym
2:6:9:13

3:4:10:11

We see that all pin numbers are shown for each pin; this reminds us that this is a slotted device! slotted devices
should specify the slot number in the instance name so, select the component, press q and change the Ul name
attribute to Ul : 1. You can also remove the . sym extension in the 'Symbol' entry of the dialog box, for more
compactness:

As you can see now the slot is resolved and the right pin numbers are displayed. Now select and copy the
component (use the ¢ key), and change the name attribute of the new copy to Ul: 3:

172

TUTORIAL: CREATE AN XSCHEM SYMBOL

10. Now draw some wires, for example to create an SR latch as shown, use the w key to draw wires; when done with
the wiring insert a net label by pressing the Insert key and navigating to
.. ./share/xschem/xschem_library/devices (the XSCHEM system symbol library) and selecting
lab_pin:
xschem - test.sch*

File Edit Options View Properties Layers Toocls Symbol Highlight Simulation Waves Simulate Netlist | Help

Directory: Imntix/homefschippes/share/xschem/xschem_library/devices E’}

lab_pin.sym netlist_not_shown.sym
lab_wire.sym NMos.sym

m launcher.sym nmos3.sym

ith.sym led.sym nmosd.sym

vl.sym netlist.sym NoCeNm.sym
netlist_at_end.sym npn.sym

K
File name: |lab_pin.sym Open

Files of type: Symbol files (*.sym) Cancel

SMNAP: |10 GRID: |20 NETLIST MODE: |tedax mouse = 320 10 - /mnt/x/home/schippes/x/test.sch selected: 0

Place 4 of these 1ab_pin symbols and set their 1ab attributetoS_, R _, Q, Q_respectively; place the 4
labels as shown (use the Shift—£ key to flip the @, Q_ labels):

173

TUTORIAL: CREATE AN XSCHEM SYMBOL

11. The test circuit for this tutorial is now complete: its time to extract the tEDAX netlist; press the Shift-A key to
enable showing the netlist window, press Shift—v multiple times to set the netlisting mode as shown in the

bottom status bar to tedax, and finally press the Net 1ist button located in the top-right region of the window:
xschem - test.sch

File Edit Options View Properties Layers Toocls Symbol Highlight Simulation Waves Simulate Netlist | Help

LEDAX w1

begin netlist vl test
conn Ul 8

pinslot Ul 8 3

pinidx U1 8 1

pinname Ul 8 A

conn R U1 9

pinslot U1 9 3

pinidx U1 9 2

pinname Ul 9 B

conn 5 U111

pinslet U1 1 1

pinidx U1 1 1

pinname Ul 1 A

conn QU1 18

pinslot U1 18 3
pinidx Ul 18 3
pinname Ul 18 Z

conn U1 2

pinslot Ul 2 1

pinidx Ul 2 2

pinname Ul 2 B
pinslet Ul 11 4
pinidx U1 11 3
pinname Ul 11 Z

conn Q Ul 3

pinslot Ul 3 1

pinidx Ul 3 3
pinname Ul 3
pinslot Ul 4
pinidx Ul 4 3
pinname Ul 4 Z
pinsleot Ul 12 4
pinidx U1 12 1
pinname Ul 12 A

z
2

Dismiss

SMAP: |10 GRID: |20 NETLIST MODE: |tedax mouse = 370 120 - /mnt/x/heme/schippes/xftest.sch selected: O

This is the resulting netlist you should get:

tEDAx vl
begin netlist vl test
conn Q Ul 8

174

TUTORIAL: CREATE AN XSCHEM SYMBOL

pinslot Ul 8 3
pinidx Ul 8 1
pinname Ul 8 A
conn R_ Ul 9
pinslot Ul 9 3
pinidx Ul 9 2
pinname Ul 9 B
conn S_ Ul 1
pinslot Ul 1 1
pinidx U1 1 1
pinname Ul 1 A
conn Q_ Ul 10
pinslot Ul 10 3
pinidx U1l 10 3
pinname Ul 10 Z
conn Q_ Ul 2
pinslot Ul 2 1
pinidx Ul 2 2
pinname Ul 2 B
pinslot Ul 11 4
pinidx U1l 11 3
pinname Ul 11 Z
conn Q Ul 3
pinslot Ul 3 1
pinidx Ul 3 3
pinname Ul 3 Z
pinslot Ul 4 2
pinidx Ul 4 3
pinname Ul 4 Z
pinslot Ul 12 4
pinidx Ul 12 1
pinname Ul 12 A
pinslot Ul 13 4
pinidx Ul 13 2
pinname Ul 13 B
pinslot Ul 5 2
pinidx Ul 5 1
pinname Ul 5 A
conn VCC Ul 14
pinname Ul 14 power
pinslot Ul 6 2
pinidx Ul 6 2
pinname Ul 6 B
conn GND Ul 7
pinname Ul 7 ground
footprint Ul dip(14)
device Ul CD4011B
end netlist

This concludes the tutorial; of course this is not a complete circuit, connectors are missing among other things,
but the basics of creating a new component should now be less obscure.

175

TUTORIAL: Manage XSCHEM design / symbol libraries
UP

TUTORIAL: Manage XSCHEM design / symbol libraries

There are 2 ways to describe symbols in xschem,

o first approach: define a XSCHEM LIBRARY_ PATH that is a list of paths to last level directories containing .sym
/.sch files

¢ second approach: define a XSCHEM LIBRARY_ PATH that is a list of paths one or more levels above the
directories containing .sym/.sch files

In the first approach a 'npn . sym' symbol placed in a schematic will be saved as 'npn. sym' in the .sch file, when loading
back the parent schematic xschem will go through the elements of XSCHEM LIBRARY PATH and look for a directory
containing npn . sym.

In the second approach the 'npn. sym' will be saved as 'devices/npn. sym' (assuming devices/ is the directory
containing this symbol) . This is because the XSCHEM_LIBRARY_PATH is pointing to something like
/some/path/xschem_library/ and xschem_ library/ contains devices/ (names are just given as
examples, any dir name is allowed for xschem_ library/ and devices/)

The first approach is preferred by pcb hobbysts, people working on small designs. the second approach is preferred for
big designs where a one or more directory level indirection is desired for symbols, so any symbol in xschem is given as
'libname/symname . sym' (one level directory specification in symbol references) or
'libgroup/libname/symname . sym' (2 level directory specification in symbol references) instead of just

'symname . sym'

In any case the real path of the symbol reference is obtained by prepending the XSCHEM_LIBRARY_PATH paths to the
symbol reference until the resulting file is found in the machine filesystem.

For VLSI / big designs I strongly suggest using the second approach, just as an example i have the following dirs:

~/share/xschem/xschem_library/
containing:
devices/
TECHLIB/

~/xschem_library/
containing:
stdcell_stef/

~/share/doc/xschem/
containing:

library_t9/
dram/

then in my xschemrc i have the following:

set XSCHEM LIBRARY PATH \
$env (HOME) /share/xschem/xschem_library:$env (HOME) /share/doc/xschem/ : $env (HOME) /xschem_

176

You may choose either method, but please be consistent throughout your design.

You may choose either method, but please be consistent throughout your
design.

177

TUTORIAL: Use Bus/Vector notation for signal bundles / arrays of instances

upP

TUTORIAL: Use Bus/Vector notation for signal bundles /
arrays of instances

XSCHEM has the ability to use a compact notation to represent signal bundles. There is no specific 'bus’ entity, in
XSCHEM a bus is simply a wire with a label representing a bundle of bits, the syntax is explained below. Normally a net
label assigns a name to a wire, for example 'ENABLE', 'RESET', 'CLK' and so on, however more complex formats are
available to describe multiple bits.

® AAA, BBB, CCC: described a bundle of 3 signals, AAA, BBB, CCC.

¢ AAA[3:0]: describes the set AAA[3] ,AAA[2],AAA[1],AAA[O]. The form AAA[3:0] and
AAA[3],AAA[2],AAA[1],AAA[O] are exactly equivalent.

e AAA[1:0],BBB[5:4]: describes the bundle: AAA[1] ,AAA[0],BBB[5],BBB[4].

®¢ AAA[6:0:2]: describes the bundle AAA[6] ,ARAA[4] ,AAA[2],AAA[O].

® 2*AAA[1:0]: describes the bundle AAA[1],AAA[O0],AAA[1],ARA[O].

¢ AAA[1:0]*2: describes the bundle AAA[1],AAA[1],AAA[O0],ARA[O].

e 2* (AAA[1:0], BBB): describes the bundle AAA[1] ,AAA[O],BBB,AAA[1],AAA[O], BBB.

e (AAA[1:0], BBB) *2: describes the bundle AAA[1] ,AAA[1],AAA[0],AAA[O], BBB, BBB.

All the above notations are perfectly valid label net name attributes.

In a very similar way multiple instances can be placed in a schematic setting the 'name' attribute to a vector notation.
For example in picture below x22 [15:0] represents 16 inverters with names x22[15] ,x22[14], ...,x22[0].

178

devices/lab_pin.sym

m=1
p:40u/2.4u
40u/2.4u

LDY[3:0]*4

4*LDX[3:0]

n:10u/2.4u
10u/2.4u

m=1
p:40u/2.4u

n:20uf2.4u

m=1
p:40u/2.4u

30

n:20u/2.4u

m=1
p:60u/2.4u

n:30u/2.4u

m=1
p:60u/2.4u

n:30u/2.4u

m=1
p:60u/2.4u

n:30u/2.4u

m=1
p:60u/2.4u

n:30u/2.4u

TUTORIAL: Use Bus/Vector notation for signal bundles / arrays of instances

devicesflab_pin.sym

Recently a new notation has been added for buses that expands without putting brackets:

e AAA[3..0]: describes the set AAA3, AAA2, AAALl, AAAOD. The form AAA[3..0] and
AAA3,AAA2,AAAl, AAAO are exactly equivalent.
eAAA[1l..0],BBB[5..4]: describes the bundle: AAA1, AAAO, BBB5, BBBA4.
®¢AAA[6..0..2]: describes the bundle AAA6, AAA4, AAA2, AAAOD.
e 2*AAA[1..0]: describes the bundle AAA1l, AAAO, AAALl, AAAO.
e AAA[1..0]*2: describes the bundle AAA1l, AAA1l, AAAO, AAAO.
e 2* (AAA[1..0], BBB): describes the bundle AAA1l, AAAO, BBB, AAAl, AAAOQ, BBB.
e (AAA[1l..0], BBB) *2: describes the bundle AAA1, AAA1l, AAAO, AAAO, BBB, BBB.

TUTORIAL: Use Bus/Vector notation for signal bundles / arrays of instances

In following picture there is a main 72 bit bus (the vertical thick wire) and bus ripper symbols
(devices/bus_connect_nolab. sym) are used to take slices of bits from the main bus. Wire labels are used to
define bus slices. To display thick wires for busses, select all wire segments, then press 'q" and add attribute bus=t rue.

devicesfbus_connect_noclab.sym

CRO_CHECK_PATTERN[71:0]

CRO_CHECK_PATTERN[71.0]

LDDBE
LDHWE_CB

CRO_CHECK_PATTERN[15:0]

devicesflab_wire.sym
LDHWE_CBANKI[11

following picture shows an istantiation of 6 inverters:

« BB[0O..5]

The generated spice netlist is the following:

xinv5 BB0O AAS5 bf
xinv4d BBl AA4 bf
xinv3 BB2 AA3 bf
xinv2 BB3 AA2 bf
xinvl BB4 AAl bf
xinv0 BBS5 AAQ0 bf

180

TUTORIAL: Use Bus/Vector notation for signal bundles / arrays of instances

Example of a more complex bus routing. main bus is a bundle of 2 buses: DATA_A[0..15] and DATA_BJ[0..15]

7| CHIP_SELECT

DATAO
DATA1
DATA2
DATA3
DATA4
DATAS
DATAB
DATA7
DATAS8
DATA9
DATA10
DATA11

CHIP_SELECT ©

ADO
AD1
AD2
AD3

DATA12
DATA13
DATA14
DATA15

VDD_ANALOG

VDD DIGITAL

DATAO
DATAL
DATAZ2
DATA3
DATA4
DATAS
DATA6
DATAT7
DATA8
DATA9
DATAL0
DATA11
DATA12
DATA13
DATA14

o CHIP_SELECT

DATA15

[DATA_B[0..15]

VDD _ANALOG

VDD_DIGITAL

z
3
il

Q
@]
-
x
z
<
o
e
[©]

181

TUTORIAL: Backannotation of NGSPICE simulation operatingpoint data into an XSCHEM schematic
Up

TUTORIAL: Backannotation of NGSPICE simulation
operating
point data into an XSCHEM schematic

The objective of this tutorial is to show into the schematic the operating point data (voltages currents, other electrical
parameters) of a SPICE simulation done with the Ngspice simulator. This tutorial is based on the cmos_example.sch
example schematic located in the examples/ directory. Start Xschem from a terminal since we need to give some
commands in this tutorial.

CMOS DIFFERENTIAL AMPLIFIER

EXAMPLE

— MINUS
An veey
AN -
0

Sui2ull SufZufl
vee 4 bs d pa——vcc

— PLUS N =,
A vrLs G ——=——— DIFFOUT
I.\ .._'2.5 pwl0 2.4 10n2.4 10.1n 2.6 1(* oL
0 T E«m=1

Om
-vee oe

T |'4\ 1245 T 10u/1ud

Ty e pLys e b0 0= [=— MINUS

£
0 GN] sTIMULI

° [}
2
3
IHI

SC H E M Stefan Schippers 2020-12-27 23:52:05
cmos_example.sch

CONFIGURATION

Open your xschemrc file (usually ~/ . xschem/xschemrc), go to the end of the file, Ensure the following tcl file is
appended to the list of scripts loaded on startup by Xschem:

list of tcl files to preload.
lappend tcl_files ${XSCHEM_SHAREDIR}/ngspice_backannotate.tcl

SETUP

Select the 'STIMULI' code block (click on it) and edit its attributes (press g or Shift—q):

.temp 30

** models are generally not free: you must download

** SPICE models for active devices and put them into the below
** referenced file in netlist/simulation directory.

182

https://sourceforge.net/projects/ngspice/

SETUP

.include "models_cmos_example.txt"
.control

op

save all

write cmos_example.raw

.endc

The important parts are in red in above text. This ensures all variables are saved into the raw file. These instructions are
for an interactive ngspice run.

When done open the Simulation—-> Configure simulators and tools dialog box and ensure the
Ngspice simulator is selected (not Ngspice batch). Also ensure the spice netlist mode is selected (Options —>
Spice netlist).

Simulation Configuration

$terminal -e 'ngspice -i "S$N" -a || sh’
Ngspice w [T Fg [Status

ngspice -b -r "$n.raw" -o "$n.out" "SN"
spice Ngspice batch - [" Fg I« Status

Xyce "$N" -r "$n.raw"

Xyce batch [~ Fg v Status

iverilog -o .verilog object -g2012 "$N" &% vvp .verilog object
[~ Fg v Status

verilog ‘Icarus verilog w

Cancel Hel Accept and Close | Accept and Save Configuration
p

SIMULATION

If you now press the Net1ist followed by the Simulate button simulation should complete with no errors.

183

SIMULATION

™ o=
File Edit Options View Properties Layers Tools Symbol Highlight Simulation Netlist | [SlllNENG] WWaves | Help

S DIFFERENTIAL AMPLIFIER
PLE

nin i

nim ine
nim ine
nim 1ne
nim 1ne

oomm

I

and THOM = 2

SNAP: |10 GRID: |20 NETLIST MODE: |spice mouse = -0-330 - selected: 0 path: .

You can close the simulator since we need only the cmos_example. raw file that is now saved in the simulation
directory (usually ~/ . xschem/simulations/cmos_example.raw).

Now verify that xschem is able to read the raw file: issue this command in the xschem console:

ngspice: :annotate

xschem [~] ngspice::annotate
Raw file read
xschem [~]

If there are no errors we are ready and set.

PUSH ANNOTATION METHOD

Start placing some probe elements into the schematic. The first element is the devices/spice_probe.sym
component. This must be attached to some schematic wires to show the voltage value.

184

PUSH ANNOTATION METHOD

A0

* DIFFOL

Place some of these elements on various nets, issue the above mentioned ngspice: :annotate command and see the

voltage values in the schematic.

— MINUS

v
dhis
/

-~

— PLUS

=

0
— VCC
.

)
2
8

YW SCHEM

~, WPLUS
)2 pwl 024 10n 2.4 10.1n 26

CMOS DIFFERENTIAL AMPLIFIER

GN

)51:

EXAMPLE
VCC l
5wzl
VCC * - F
mb
“w
3.321
Gy
on
I\| IBIAS Towlwl
10 pLYS e pa— 0
-
. 131
Su/2ul /’£
m3 I | ml
0 0

[
== Backannotate

Stefan Schippers
cmos_example.sch

_ DIFFOUT

STIMULI

2020-12-28 00:02:28

Another useful component is the devices/ammeter . sym one which allow to monitor branch currents. Break some
wires and insert this component as shown here:

185

PUSH ANNOTATION METHOD

L

CL
2p
[| |] m=1
Vmeas Vmeasl Cf
A4 N/
b}
lOu/lu;’l 10u/1lu/l
PLUS >—'—i 0 }—'—< MINUS
mb5S
Vmeas?
1.31
r D
/li .__| Su/2u/l
ml

IMPORTANT: When inserting current probes the circuit topology changes (new nodes are created) so you need to
re-create the netlist and re-run the simulation

Doing again the ngspice: :annotate command after simulation will update the ammeters showing the branch
currents.

CMOS DIFFERENTIAL AMPLIFIER

EXAMPLE
. 5
MINUS VCCI /j£
|'/- \ ‘;15
N
0 vee 5L;'2|.;':.< b (:l Suf2ull vee
PLUS ﬁzi e
= L T L DIFFOUT
|_f \\;-‘le.';wpnsﬂ!}2.41!}!\2.41!}.1n2.5 ,2.qp=1
el Vmeas Ymeasl gT
0 Y5.00522-05 5.00522-05
—=VCC os 1:\..,1w1 mmm
;s PLUS = po— < [minus
J (4 " iBias
A, vvee Y/ 100 J. * J-
(5

L Wmess2
0 1001004
GN STIMULI
131 [
wl

_nr Lie
Suf2ul

2|
r 1
m3} |mi

0 0

Backannotate

XSC H E M Stefan Schippers 2020-12-28 01:05:52
cmos_example.sch

These voltage and current values are inserted in the probe components as attributes and thus can be saved to file.
Remember that if you change the circuit the values shown in the probe elements are no longer valid, you should update
the values with a new simulation + annotate operation when done with the changes.

186

PULL ANNOTATION METHOD

What i have described so far is the simplest annotation procedure based on a push method: a tcl script reads the
simulation raw file and 'pushes' voltage and current values into the probe components as instance attributes. If you do an
edit attribute on one of these elements you see the attribute 'pushed' into it by the annotate script. The advantage of this
method is that values pushed into probes can be saved to file and are thus persistent.

At Fropertie _ EJ:H
Path: |/home/schippes/xschem-repo/trunk/xschem_library/devices

5ymbnl|5pice_pmbe.5ym OK | Cancel | Load |Del‘

[~ No change properties [Preserve unchanged props [Copy cell Edit Att
name=p2l attrs="" voltage=3.321 —

=

I ————————————————————————.——".

PULL ANNOTATION METHOD

There is another annotation procedure that is based on a pull method: the probe objects have tcl commands embedded that
fetch simulation data from a table that has been read by the annotate script.

To ensure all currents are saved modify the STIMULI attributes as follows:

.temp 30

** models are generally not free: you must download
** SPICE models for active devices and put them into the below
** referenced file in netlist/simulation directory.
.include "models_cmos_example.txt"

.option savecurrents

.save all

.control

op

write cmos_example.raw

.endc

Remove all previous probe elements and place some devices/ngspice_probe.sym components and some
devices/ngspice_get_value.sym components. the ngspice_probe.sym is a simple voltage viewer and must be
attached to a net. The ngspice_get_value.sym displays a generic variable stored in the raw file. This symbol is usually
placed next to the referenced component, but does not need to be attached to any specific point or wire. Edit its attributes
and set its node attribute to an existing saved variable in the raw file.

187

PULL ANNOTATION METHOD

File Edit Options View Properties Layers Tools Symbol Highlight

i_ (mAalid])

Path: |/home/schippes/xschem-repo/trunk/xschem_library/devices

Symbol ngspice get value.sym OK | Cancel | Load |Del|

" No change properties [Preserve unchanged props [Copy cell Edit Att
name=r2 node=1i(@m4[id]) :

Run again the simulation and the ngspice: : annotate command and values will be updated.

188

PULL ANNOTATION METHOD

CMOS DIFFERENTIAL AMPLIFIER
EXAMPLE

VCC l K

ol []
Suf 2 1] Su/Zufl
os VCC* :l S'I' '-T| = = VCC
o 2
of :

PLUS G 1371
- $<——+——— DIFFOUT
. VFLUS r e
(\:; 2.5 pwl 0 2.4 10n 2.4 10.1n 2.6 | T L
wf G_l
N g o 5005505 5.0055-05
*WCC 0 TOu/lu/l 10ufLufl
l b PLUS ~—=-{ p-+— 0 0 =4 f-=— MINUS
), (17 ews md m5
T, Wvee WY/ 100w - &
()5
0s i .
GN e STIMULI
Su/2uT 131 Su/2u/l I
4 |- ’ - bw —

oT oI - View raw file

* Backannotate
SC H E M Stefan Schippers 2020-12-28 02:00:13
cmos_example.sch

You can add additional variables in the raw file , for example modifying the .save instruction:
.save all @m4[gm] @m5[gm] @ml[gm]

|

i(m4lid]) i(m5[id])
5.005e-05 5.005e-05 _

2]

Path: [{home/schippes/xschem-repo/trunk/xschem_library/devices

Symbol ngspice_get_value.sym 0] 4 | Cancel | Load |Del|

[No change properties | Preserve unchanged props | Copy cell Edit Att ml[gm]

name=r9 node=@m4[gm]

Data annotated into the schematic using these components allows more simulation parameters to be viewed into the
schematic, not being restricted to currents and voltages. Since these components get data using a pull method data is not

189

PULL ANNOTATION METHOD

persistent and not saved to file. After reloading the file just do a ngspice: :annotate to view data again.

There is one last probe component, the devices/ngspice_get_expr.sym. This is the most complex one, and thus
also the most flexible. It allows to insert a generic tcl expression using spice simulated data to report more complex data.
In the example below this component is used to display the electrical power of transistor m3, calculated as V (GN) *
Id(m3).

Bt
Path: |/homefschippes/xschem-repo/trunk/xschem_library/devices

Symbol ngspice_get expr.sym OK Cancel Load

No change properties Preserve unchanged props Copy cell Edit Attr: |<ALL=>
name=rll
node="[format %.4g [expr ([ngspice::get voltage GN]) * [ngspice::get current {m3[id]}]]] w"
descr = power

-

kd |0/
Path: |fhome/schippes/xschem-repoftrunk/xschem_library/devices

Symbol ngspice_get_expr.sym oK Cancel Load Del Browse

No change properties Preserve unchanged props Copy cell Edit Attr:|<ALL=>

name=r12
node="[expr [ngspice::get node {@m5[gm]l}] / [ngspice::get node {@ml[gm]}]]"
descr = "gm ratio m5/ml"

The syntax is a bit complex, considering the verbosity of TCL and the strange ngspice naming syntax, however once a
working one is created changing the expression is easy.

190

PULL ANNOTATION METHOD

To avoid the need of typing commands in the xschem console a launcher component devices/launcher.sym can be
placed with the tcl command for doing the annotation. Just do a Ctxr1—-Click on it to trigger the annotation.

== Backannotate

>chippers

Edit Properties
Ka rr Path: |/fhome/schippes/xschem-repo/trunk/xschem_library/devices
Symbol launcher.sym OK ‘ Cancel Load |

" No change properties [Preserve unchanged props [Copy cell Edit Attr: | <ALL>
name=h1

descr=Backannotate
tclcommand="ngspice: :annotate"

191

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

upP

TUTORIAL: Use symgen.awk to create symbols from
'djboxsym' compatible text files

The symgen . awk utility (installed in (install_root) /share/xschem) generates xschem symbol files from a
textual description that is backward compatible to DJ Delorie's perl djboxsym symbol generator for the geda schematic
editor (gschem, lepton-schematic). A sample sample . symdef file is the following:

This is a sample symbol definition for documenting djboxsym. Some
of the pins have been intentionally mistyped in order to demonstrate
all combinations of flags. DO NOT USE AS A CP2201 REFERENCE!

[labels]

SAMPLE

refdes=U?

DEMO ONLY

! copryright=2006 DJ Delorie

! author=DJ Delorie

! uselicense=unlimited

! distlicense=GPL

! device=sample device

! description=ethernet controller
! footprint=QFN-28

[left]
24 ! CS
.bus

11 ADO
12 AD1
13 AD2
14 AD3
15 AD4
16 AD4
17 AD6
18 AD7
21 > ALE

22 ! RD/ (DS)
23 !> WR/ (R/!W)

25 ! INT
29 _RESET_

[right]

10 ! RST
26 > MOTEN
1 !'> LA

6 TX+
7 TX-

5 RX+
4 RX-

28 XTALl

27 XTAL2
[top]

192

http://www.gedasymbols.org/user/dj_delorie/tools/djboxsym.html

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

3 AV+

8 VDD1

30 !'> _CLK_
19 VDD2

[bottom]
2 AGND

9 DGND1
20 DGND2

Creating the symbol is simple:
<install_path>/share/xschem/symgen.awk sample.symdef > sample.sym
The resulting symbol is shown here under, side-compared with the same symbol generated by djboxsym for gschem:

. b
xschem - sample sym =] > A [_] "’ 'V © ._I—’ J Abe D

File Edit Options View Properties Layers Tools Symbol Highlight Simulation E‘ Netlist | Help il sample_gschem.sym

SNAP: |10 GRID: |20 NETLIST MODE: |spice ouse = -190 -430 - sample.sym selected: Grid(100, 100) RB: ON MN: ON select Mode

File Edit view Page Add Hierarchy Attributes Options Netlist Help

VDDl CLK VDD2

RST P
SAMPLE

" MOTEN <

AV+ VDD1
cs e : DEMO ONLY

ADO

AD1

AD2

AD3

AD4

AD4

AD6

AD7 SAMPLE

SALE refdes=U? ALE

RD/(DS) DEMO ONLY JRD/(DS)
RI(R/'W) p WR/(R/!W)

INT B XTAL1
: qINT
RESET 27 XTAL2
RESET

AGND DGND1- -DGND2 AGND DGND1 DGND2

4 3

Another sample2. symdef file specifically created to generate a perfectly valid xschem symbol (including attributes
for spice netlisting) is the following:

<pinnumber> <direction>([<circle><edge_trigger>] <name>

circle: !

edge_trigger: >

direction is mandatory: i=input, o=output, b=bidirectional (inout)

193

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

[labels]

FAKE IC TO TEST XSCHEM SYMGEN
STEFAN FREDERIK SCHIPPERS

@symname

@name

! type=subcircuit

! format="@name @pinlist @symname"
! template="name=x1"

——vmode
[left]

24 i! CHIP_SELECT
.bus

11 i ADO
12 i AD1
13 i AD2
14 i AD3
15 i AD4
16 i ADS
17 i ADG6
18 i AD7

21 i> ALE

22 il _RD_

23 i!> _WR_

25 i! INTERRUPT_REQUEST
[right]

10 il RST

26 i> MOTEN

1 i!> LA

6) TXP

7) TXM

5 i RXP

4 i RXM

28 i XTALL

27 i XTALZ2

[top]

3 io AVP

.bus

29 o! DATAOQ

30 o! DATA1

31 o! DATAZ2

32 o DATA3

33 o DATA4

34 o! DATAS

35 o! DATAG

36 o! DATA7

37 o! DATAS8

38 o DATAY9

39 o> DATA1O0

40 o> DATA11l

41 o> DATA12

42 o DATA13

43 o DATA14

44 o DATA1S

8 io VDD1

19 io VDD2

45 io VDD_ANALOG
46 io VDD_DIGITAL
[bottom]

2 io! GND_ANALOG
47 io! GND_DIGITAL

194

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

9 io> DGND1
20 io> GND2

FAKE IC TO TEST XSCHEM SYMGEN
STEFAN FREDERIK SCHIPPERS
fmname

Ename

—4 INTERRUPT_REQUEST

M

MDD AMNALC

—] (3

some extensions of xschem's symdef text file format with respect to original djboxsym format:

¢ In addition to optional ! (inversion bubble) and > (edge trigger) specifiers XSCHEM's symgen . awk accepts a
pin direction specifier, i, o, 1o and p (latter one for power pins, treated by xschem as inout) for 'input', 'output’,
‘inout’ (bidirectional) direction and 'power’. These attributes are fundamental for digital simulations (Verilog,
Vhdl). If this specifier is missing (as it is in djboxsym .symdef files) then the direction is assumed as b (inout).
XSCHEM does not have any specific direction for power pins so they are treated as 'inout'

Port direction specifiers are indeed supported also by 'djboxsym' but not documented.

¢ Option ——vmode given before any pin declaration like in djboxsym sets vertical orientation for top / bottom
pins.

® _bus specifier can be used for all pin orientations, left, top, right, bottom if ——vmode is enabled, otherwise it
will affect only spacing of left/right pins.

¢ Option ——auto_pinnumber given before any pin declaration lets symgen . awk automatically add pin
numbers, so the first field may be omitted

195

http://www.gedasymbols.org/user/dj_delorie/tools/djboxsym.html

TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files

e Edge trigger (>) and inversion bubble (!) specifiers are drawn on all sides, not only left/right.
e Option ——hide_pinnumber given before any pin declaration avoids pin numbers in generated symbol. If this
option is used it is mostly done together with ——auto_pinnumber to get rid of pin numbers completely.

196

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem

upP

TUTORIAL: Translate GEDA gschem/lepton-schematic
schematics and symbols to xschem

The gschemtoxschem. awk utility (installed in (install_root) /share/xschem) generates xschem schematic
and symbol files from their GEDA equivalents.

First of all, note that xschem comes with all geda symbols already translated to xschem.

Create an empty directory where you want your xschem schematics/symbols, inside this directory create an xschemrc
file with the following path added, if not already done in your ~/ . xschem/xschemrc file:

append XSCHEM_LIBRARY_PATH :${XSCHEM_SHAREDIR}/../doc/xschem/gschem_import/sym

Next, in this directory create a convert . sh script and make it executable:

#!/bin/bash

remove empty glob specifications *.sym or *.sch
shopt —-s nullglob

for file in directory_with_geda_files/*.{sym, sch}
do

/path_to_xschem_install_root/share/xschem/gschemtoxschem.awk $file > $(basename —- $file)
done

Note that you have to set the correct path for gschemtoxschem. awk depending on your xschem installation and set
the correct path for the directory (directory_with_geda_files in above example) containing the geda files.

The current directory will be populated with xschem schematics/symbols with the same name as their GEDA equivalents.
Incidentally xschem and gschem use the same file extensions (.sym, .sch), so be careful not to mix xschem and gschem
files.

Below an example of a schematic and a symbol shown both in xschem and lepton-schematic (gschem fork)

197

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem

198

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem
- O0x

File Edit View Page Add Hierarchy Attributes Options Netlist Help

[[#4 " SPIGE directive

: ;F :Ikzso_“%‘.h‘--ls

TLATESM - Low-active D-Latch wf clock-enable + asynchr. 5

mu= LATESNsch
aare 2019-05-04 = u: SReviciong
1 -1 S <stdcelllib@nospam chipforge org=

ect Mode

]S
Netlist| Simulate | Waves| Help

T

A3 SFICE SUBCET | |.~.-1 SPICE directive | |.-..- SPICE directive |

LATEEN uriknowmn unknown
PARAM Wmin=1.5u PARAM g=2

Model name: nmos 4 Model name: pmos
File: Technology/s picefls lunmos.mad File: Technology/'s pice/ls Lupmas . mod

S | | 1 Geron

set LATEN and LATSN

REVISION ERevisionE

oravin 8y =5tdcelllib@ nospam.chipforge.org=

GRID: 20 NETLIST MODE: |spice mouse = -10 -210 - selected: 0 path: .

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem

200

TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem

-|0x

File Edit View Page Add Hierarchy Attributes Options Netlist Help

* untitled_1.sch z‘3|

MN: ON Select Mode

™ —O|=
File Edit Options View Properties Layers Tools Symbol Highlight Simulation Netlist| Simulate| Waves | Help

GRID: 20 NETLIST MODE: |spice mouse = 370 -910 - selected: 0 path: .

Notes for schematics targeted for spice simulations

Notes for schematics targeted for spice simulations

Most of geda schematics do not define precise rules for spice netlisting. primitive symbols are symbols that do not have a
schematic representation, examples are the nmos and pmos transistors in first schematic. They should have a format
property that defines how the symbol should be translated to spice netlist. See the relevant schem manual page.
Subcircuit symbols are symbols that translate to spice as a .subckt calls. An example is the LATESN symbol in above
picture. Xschem convention is that subcircuit symbol instances have a name attribute that begins with X' or 'x'. As with
primitive symbols they also have a format global attribute, but the type=subcircuit attribute states it is a
subcircuit instance. After producing the instance call (for example X1 netl net2 net3

subcircuit_name)) for all instances of this symbol a .subckt expansion is also produced:

.subckt subcircuit_name pinl pin2 pin3 ...
.ends

After doing the conversion with gschemtoxschem. awk you should check your schematics and symbols and make the
necessary corrections.

In particular you should check that schematic pins match symbol pins, regarding pin name and direction. Xschem
standard way is to use ipin.sym, opin.sym, iopin.sch for input, output, inout pins, respectively. Following
image shows the original converted schematic and the hand-modified schematic with the proper pins. Note that
VDD/GND pins have been removed since the LATESN symbol does not have such supply pins.

In spice netlist VDD/GND to the subcircuit is in this particular case passed via net-assign.

202

Notes for schematics targeted for spice simulations

™ -Ox

File Edit Options View Properties Layers Tools Symbol Highlight Simulation Netlist| Simulate| Waves | Help

A3 SPCE SOBTET | |.--1 SFICE dir
UAFERR M

=L LATEN and LATSN TOETESN - Low-active D-Latch w/ clock-enable + asyrichr. SN
FILE LATESN.sch
Pl LR

1
GRID: |20 NETLIST MODE: |spice mouse = -30 -110 - sele

=-Ox
File Edit Options View Properties Layers Tools Symbol Highlight Simulation

A3 SPICE SOBCET | G tve A3 SPICE directne
TATESH 7 =151 TFAFERrg=1

K
asd

5

_—|E}..E‘E;i P S

1
u

set LATEN and LATSN TATESN - Low-active D-Latch w/ clock-enable + asynchr. SN

LATESN.sch

REVIION: SHEVISIONS

DRAWN BY:

SNAP: |10 GRID: |20 NETLIST MODE: |spice mouse = 1850 -1100 - selected: 0 path: .

FAQ

upP

FAQ

| want new instances to get assigned a new unique name automatically.

Add this to your xschemrc file:
set disable_unique_names O

By default XSCHEM allows instance name (Refdes) duplicates in the schematic. This must be resolved by the user
normally, before exporting any netlist. The Hilight — Highlight duplicate instance names (k key)
menu entry can be used to mark the components that need to be renamed. The Highlight - Rename duplicate
instance names menu entry can be used to automatically rename the last added components so that they have an
unique name. Using the above mentioned xschemrc option will automatically rename any added refdes that clashes with
existing names.

Why do i have to press 'm' to move a component instead of just click and drag?

XSCHEM is intended to handle very big schematics, mouse drags are used to select a rectangular portion of the circuit to
move / stretch, if a mouse click + drag moves components it would be very easy to move things instead of selecting
things. This happens with geda-gschem for example:

204

Why do i have to press 'm' to move a component instead of just click and drag?

|

l
; D do not mount
1

ount

1
.
3

net=+3.3V:8
net=GMND:4

Here ant toslt th 7 nd R8 resistors, so i place the mouse close to the upper-left R7 boundary and start dragging,
but since clicking also selects nearby objects the wire gets selected and moving the mouse will move the wire.

205

| start xschem in the background and it freezes. Why?

l
4 D do not mount
1

10T Mount

1
o
3

net=+3.3V-8
net=GMND:4

This behavior is considered not acceptable so clicking and dragging will never modify the circuit. Pressing 'm' (for move)
or 'c' (for copy) makes the behavior more predictable and safer. A new user just needs to get used to it.

| start xschem in the background and it freezes. Why?

XSCHEM is usually launched from a terminal, the terminal becomes a TCL shell where commands can be sent to
xschem. For this reason XSCHEM should not be launched in background, as any I/O operation to/from the terminal will

block the program. If you don't plan to use the terminal just start XSCHEM with the -b option: xschem -b &.
XSCHEM will fork itself in the background detaching from the terminal.

Using Xschem (also for skywater-pdk users): a checklist in case of problems:

¢ Xschem by itself (as well as ngspice and open_pdks) does not require a docker container if you build from sources.

¢ The whole skywater pdk is in rapid evolution, and so is xschem. Do not use packaged versions of xschem provided by
linux distributions, the xschem version provided is far too old. Same consideration for ngspice. Please build xschem
from sources by cloning from git: git clone git@ github.com:StefanSchippers/xschem.git xschem-src, then running
Jconfigure with optional --prefix parameter, see instructions here. In particular please verify you have all the required
packages installed. refer to the install page in the xschem manual.

¢ To install xschem and ngspice follow this video, but DO NOT follow this video for skywater spice models installation,
there is a second video for this, the default and highly recommended procedure is to install open_pdks.

e After installing open_pdks you can run simulations by including the top skywater model file: .lib
/your/path/to/share/pdk/sky130A/libs.tech/ngspice/sky130.lib.spice tt.

¢ The recommended way to design and simulate a circuit is to create a new empty directory and copy the open_pdks
provided xschemrc: mkdir my_example ; cp /your/path/to/share/pdk/sky130A/libs.tech/xschem/xschemrc

206

Using Xschem (also for skywater-pdk users): a checklist in case of problems:

my_example/, then cd into that directory and start xschem.

Xschem writes netlists in a directory defined by the tcl 'netlist_dir' variable. You can change the location by editing the
xschemrec file (locate the 'set netlist_dir' line and change according to your needs). By default the netlist directory is set
to ~/.xschem/simulations. Always verify you have write permissions in the directory you are using for netlist
generation. The spice simulator will be invoked by xschem and will also be running in this directory, so all spice
generated files will also be in this directory.

Xschem uses a terminal and an editor to allow editing some files or displaying some content. For this there are two
variables defined in xschemrc: editor and terminal. By default editor is set to 'gvim -f' and terminal is set to 'xterm'. |
suggest to install xterm on your system, it is a very small package and has much less problems than 'modern’ terminal
emulators, and verify 'editor' is set to an existing editor installed on the system. Please note that for gvim a -f option is
added to avoid gvim forking in the backgound. If your editor of choice forks itself in the background please provide an
option do avoid doing so. Xschem needs for the editor sub-process to finish before going forward.

Xschem is able to produce Spice, Verilog and VHDL netlists, the default open source tools for simulating these are by
default ngspice, icarus verilog and ghdl respectively. If you plan to simulate verilog designs in addition to spice, please
install icarus verilog (i recommend building from git, git clone git://github.com/steveicarus/iverilog.git verilog-src), for
VHDL simulations install ghdl from git, git clone https://github.com/ghdl/ghdl.git ghdl-src. xschem can invoke these
simulator by pressing the 'Simulate' button, this works if the paths for the simulators are correctly configured. To verify
the configuration go to xschem Simulation menu and click 'Configure simulators and tools'. A dialog box appears with
the various command lines xschem uses to invoke the simulator. There is a 'Help' button giving more information. The
Configure simulators and tools dialog box can be used to invoke different simulators, even commercial tools. Xschem
has been used with HSPICE, cadence NCSIM digital simulator and Mentor Modelsim.

¢ For ngspice specific issues please read the manual! it has lot of very useful information.

Please note that skywater-pdk has a .option scale=1.0u in the spice files, that means that all transistor dimensions you
give (L=0.18, W=2) will be scaled down by 1e6. so a 'l' means 1 micro-meter. DO not use 1=0.18u, since that will
reduce to 0.18 pico-meters!!

207

	XSCHEM TUTORIAL
	XSCHEM TUTORIAL
	XSCHEM TUTORIAL
	XSCHEM TUTORIAL
	XSCHEM ELEMENTS
	SYMBOLS
	XSCHEM PROPERTIES
	COMPONENT INSTANTIATION
	SYMBOL PROPERTY SYNTAX
	COMPONENT PROPERTY SYNTAX
	CREATING A CIRCUIT SCHEMATIC
	CREATING A CIRCUIT SCHEMATIC
	COMPONENT PARAMETERS
	EDITOR COMMANDS
	NETLISTING
	NET PROBES
	SIMULATION
	SIMULATION
	GRAPHS
	DEVELOPER INFO
	XSCHEM REMOTE CONTROL
	XSCHEM TUTORIAL
	XSCHEM TUTORIAL
	XSCHEM TUTORIAL: CREATE SYMBOL
	XSCHEM TUTORIAL: CREATE SYMBOL
	XSCHEM TUTORIAL: Bussed nets - Vectors of instances
	XSCHEM TUTORIAL: Backannotation of ngspice simulation data
	XSCHEM TUTORIAL: Use symgen.awk to create symbols from 'djboxsym' compatible text files
	XSCHEM TUTORIAL: Translate GEDA gschem/lepton-schematic schematics and symbols to xschem
	XSCHEM TUTORIAL

